On the Existence of n-Tuple Magic Rectangles

Phaisatcha Inpoonjai and Thiradet Jiarasuksakun

Abstract—Magic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph G is called degree-magic if there is a labelling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex ν is equal to $(1+|E(G)|)\deg(\nu)/2$. In this paper we generalize magic rectangles to be n-tuple magic rectangles, and prove the necessary and sufficient conditions for the existence of even n-tuple magic rectangles. Using this existence we identify the sufficient condition for degree-magic labellings of the n-fold self-union of complete bipartite graphs to exist.

Keywords—magic squares, magic rectangles, degree-magic graphs

ı. Introduction

Magic rectangles are a natural generalization of the magic squares which have widely intrigued mathematicians and the general public. A magic (p,q)-rectangle R is a $p \times q$ array in which the first pq positive integers are placed such that the sum over each row of R is constant and the sum over each column of R is another (different if $p \neq q$) constant. Harmuth [1,2] studied magic rectangles over a century ago and proved that

Theorem 1 ([1, 2]) For p, q > 1, there is a magic (p, q) -rectangle R if and only if $p \equiv q \pmod{2}$ and $(p, q) \neq (2, 2)$.

In 1990, Sun [3] studied the existence of magic rectangles. Later, Bier and Rogers [4] studied balanced magic rectangles, and Bier and Kleinschmidt [5] studied centrally symmetric and magic rectangles. Then Hagedorn [6] presented a simplified modern proof of the necessary and sufficient conditions for a magic rectangle to exist. The concept of magic rectangles was generalized to *n*-dimensions and several existence theorems were proven by Hagedorn [7].

For simple graphs without isolated vertices, if G is a graph, then V(G) and E(G) stand for the vertex set and the edge set of G, respectively. Cardinalities of these sets are called the *order* and *size* of G.

Let a graph G and a mapping f from E(G) into positive integers be given. The *index mapping* of f is the mapping f^* from V(G) into positive integers defined by

Phaisatcha Inpoonjai¹ and Thiradet Jiarasuksakun²

Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi

126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand

$$f^*(v) = \sum_{e \in E(G)} \eta(v, e) f(e) \quad \text{for every} \quad v \in V(G), \qquad (1)$$

where $\eta(v, e)$ is equal to 1 when e is an edge incident with a vertex v, and 0 otherwise. An injective mapping f from E(G) into positive integers is called a *magic labelling* of G for an *index* λ if its index mapping f^* satisfies

$$f^*(v) = \lambda$$
 for all $v \in V(G)$. (2)

A magic labelling f of a graph G is called a *supermagic labelling* if the set $\{f(e): e \in E(G)\}$ consists of consecutive positive integers. A graph G is *supermagic (magic)* whenever a supermagic (magic) labelling of G exists.

A bijective mapping f from E(G) into $\{1, 2, ..., |E(G)|\}$ is called a *degree-magic labelling* (or only *d-magic labelling*) of a graph G if its index mapping f^* satisfies

$$f^*(v) = \frac{1+|E(G)|}{2} \deg(v)$$
 for all $v \in V(G)$. (3)

A d-magic labelling f of G is called *balanced* if for all $v \in V(G)$, the following equation is satisfied

$$\left|\left\{e \in E(G): \eta(v, e) = 1, \ f(e) \le \lfloor |E(G)|/2 \rfloor\right\}\right|$$

$$= \left|\left\{e \in E(G): \eta(v, e) = 1, \ f(e) > \lfloor |E(G)|/2 \rfloor\right\}\right|. \tag{4}$$

A graph G is degree-magic (balanced degree-magic) or only d-magic when a d-magic (balanced d-magic) labelling of G exists.

The concept of magic graphs was introduced by Sedláček [8]. Later, supermagic graphs were introduced by Stewart [9]. There are now many papers published on magic and supermagic graphs; we refer the reader to Gallian [10] for more comprehensive references. Recently, the concept of degree-magic graphs was introduced by Bezegová and Ivančo [11] as an extension of supermagic regular graphs. They also established the basic properties of degree-magic graphs and proved that

Proposition 1 ([11]) For p, q > 1, the complete bipartite graph $K_{p,q}$ is d-magic if and only if $p \equiv q \pmod 2$ and $(p,q) \neq (2,2)$.

Theorem 2 ([11]) The complete bipartite graph $K_{p,q}$ is balanced d-magic if and only if the following statements hold: (i) $p \equiv q \equiv 0 \pmod{2}$;

(ii) if
$$p \equiv q \equiv 2 \pmod{4}$$
, then $\min\{p, q\} \ge 6$.

In this paper we introduce n-tuple magic rectangles. To show their existence, we introduce the closely related concept

of centrally n-tuple symmetric rectangles. Then we use the existence of centrally n-tuple symmetric rectangles to give a construction of even n-tuple magic rectangles. Finally, we identify the sufficient condition for d-magic labellings of the n-fold self-union of complete bipartite graphs to exist.

II. The *n*-Tuple Magic Rectangles

In this section we introduce n-tuple magic rectangles and prove the necessary and sufficient conditions for even n-tuple magic rectangles to exist.

Definition 1 An *n*-tuple magic (p, q)-rectangle $R := (r_{i,j}^1)$ $(r_{i,j}^2)...(r_{i,j}^n)$ is a class of *n* arrays in which each array has *p* rows and *q* columns, and the first npq positive integers are placed such that the sum over each row of any array of *R* is constant and the sum over each column of *R* is another (different if $p \neq q$) constant.

Let $R := (r_{i,j}^1)(r_{i,j}^2)...(r_{i,j}^n)$ be an n-tuple magic (p,q)-rectangle. As each row sum of any array of R is q(npq+1)/2 and each column sum of R is p(npq+1)/2 and both are integer, we then have

Proposition 2 If R is an n-tuple magic (p, q)-rectangle, then the following statements hold:

- (i) if n is odd, then $p \equiv q \pmod{2}$;
- (ii) if n is even, then $p \equiv q \equiv 0 \pmod{2}$.

Proposition 2 allows the set of n-tuple magic rectangles to be divided into sets of odd and even rectangles. We quickly see that an n-tuple magic (2, 2)-rectangle does not exist. To show the existence of other even n-tuple magic rectangles, we introduce the closely related concept of centrally n-tuple symmetric (p, q)-rectangles as follows.

Definition 2 Let x > -1 and let R be a class of n even rectangular arrays in which each array has p rows and q columns and the entries of R are numbers $\pm(x+1)$, ..., $\pm(x+npq/2)$. R is a centrally n-tuple symmetric (p,q)-rectangle of type x if the sum over each row and column of any array is zero. Additionally, if R has an equal number of positive and negative numbers in each row and column of any array, we say that R is balanced.

If R is an even n-tuple magic (p,q)-rectangle, then by subtracting (npq+1)/2 from each entry of R, we obtain a centrally n-tuple symmetric (p,q)-rectangle of type -1/2. Similarly, every centrally n-tuple symmetric (p,q)-rectangle of type -1/2 determines an even n-tuple magic (p,q)-rectangle. Thus, we can use the existence of centrally n-tuple symmetric (p,q)-rectangles to prove the existence of even n-tuple magic (p,q)-rectangles.

Lemma 1 For x, y > -1, if a balanced centrally n -tuple symmetric (p, q)-rectangle of type x exists, then a balanced centrally n -tuple symmetric (p, q) -rectangle of type y exists.

Proof. Suppose that $R := (r_{i,j}^1)(r_{i,j}^2)...(r_{i,j}^n)$ is the given rectangle. Then we define a (p, q)-rectangle $S := (s_{i,j}^1)(s_{i,j}^2)$... $(s_{i,j}^n)$ by

$$s_{i,j}^t = (y-x)\operatorname{sgn}(r_{i,j}^t) + r_{i,j}^t$$
, for every $t \in \{1, 2, ..., n\}$.

The entries of *S* are the numbers $\pm(y+1)$, ..., $\pm(y+npq/2)$. For any $t \in \{1, 2, ..., n\}$ and $1 \le i \le p$, the sum of each row is

$$\sum_{j=1}^{q} s_{i,j}^{t} = \sum_{j=1}^{q} \left((y - x) \operatorname{sgn}(r_{i,j}^{t}) + r_{i,j}^{t} \right)$$
$$= (y - x) \sum_{i=1}^{q} \operatorname{sgn}(r_{i,j}^{t}) + \sum_{i=1}^{q} r_{i,j}^{t} = 0,$$

and for all $1 \le j \le q$, the sum of each column is

$$\sum_{i=1}^{p} s_{i,j}^{t} = \sum_{i=1}^{p} \left((y - x) \operatorname{sgn}(r_{i,j}^{t}) + r_{i,j}^{t} \right)$$
$$= (y - x) \sum_{i=1}^{p} \operatorname{sgn}(r_{i,j}^{t}) + \sum_{i=1}^{p} r_{i,j}^{t} = 0.$$

Thus, S is a centrally n-tuple symmetric (p, q)-rectangle of type y. For any $t \in \{1, 2, ..., n\}$, if $r_{i,j}^t$ is positive, then $r_{i,j}^t = x + m$ for some $m \ge 1$. Hence, $s_{i,j}^t = y + m$ is also positive. Similarly, $r_{i,j}^t$ negative implies $s_{i,j}^t$ negative. Therefore, S is balanced.

Proposition 3 If a balanced centrally n -tuple symmetric (p, q) -rectangle exists, then an n -tuple magic (p, q) -rectangle exists.

Proof. Suppose R is the given rectangle. If R has type x, then by Lemma 1, there exists a balanced centrally n-tuple symmetric (p, q)-rectangle of type -1/2. Therefore, an n-tuple magic (p, q)-rectangle exists.

Example 1 We consider a balanced centrally 5 -tuple symmetric (4, 2) -rectangle $R := (r_{i,j}^1)(r_{i,j}^2)...(r_{i,j}^5)$ of type 1 as follows.

$$R := \begin{pmatrix} 2 & -2 \\ -3 & 3 \\ -4 & 4 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} 6 & -6 \\ -7 & 7 \\ -8 & 8 \\ 9 & -9 \end{pmatrix} \begin{pmatrix} 10 & -10 \\ -11 & 11 \\ -12 & 12 \\ 13 & -13 \end{pmatrix} \begin{pmatrix} 14 & -14 \\ -15 & 15 \\ -16 & 16 \\ 17 & -17 \end{pmatrix} \begin{pmatrix} 18 & -18 \\ -19 & 19 \\ -20 & 20 \\ 21 & -21 \end{pmatrix}.$$

Then we define a 5-tuple (4, 2) -rectangle $S := (s_{i,j}^1)(s_{i,j}^2)$... $(s_{i,j}^5)$ related to R by

$$s_{i,j}^t = -\frac{3}{2}\operatorname{sgn}(r_{i,j}^t) + r_{i,j}^t$$
, for every $t \in \{1, 2, 3, 4, 5\}$.

Thus, S is a balanced centrally 5-tuple symmetric (4, 2)-rectangle S of type -1/2 as follows.

$$S := \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{3}{2} & \frac{3}{2} \\ -\frac{5}{2} & \frac{5}{2} \\ \frac{7}{2} & -\frac{7}{2} \end{pmatrix} \begin{pmatrix} \frac{9}{2} & -\frac{9}{2} \\ -\frac{11}{2} & \frac{11}{2} \\ -\frac{13}{2} & \frac{13}{2} \\ -\frac{15}{2} & -\frac{15}{2} \end{pmatrix} \begin{pmatrix} \frac{17}{2} & -\frac{17}{2} \\ -\frac{19}{2} & \frac{19}{2} \\ -\frac{21}{2} & \frac{21}{2} \\ -\frac{21}{2} & \frac{21}{2} \\ -\frac{29}{2} & \frac{29}{2} \\ \frac{31}{2} & -\frac{37}{2} & \frac{37}{2} \\ \frac{39}{2} & -\frac{39}{2} \end{pmatrix}.$$

By adding 41/2 to each entry of S, we obtain a 5-tuple magic (4, 2)-rectangle T as below.

$$T := \begin{pmatrix} 21 & 20 \\ 19 & 22 \\ 18 & 23 \\ 24 & 17 \end{pmatrix} \begin{pmatrix} 25 & 16 \\ 15 & 26 \\ 14 & 27 \\ 28 & 13 \end{pmatrix} \begin{pmatrix} 29 & 12 \\ 11 & 30 \\ 10 & 31 \\ 32 & 9 \end{pmatrix} \begin{pmatrix} 33 & 8 \\ 7 & 34 \\ 6 & 35 \\ 36 & 5 \end{pmatrix} \begin{pmatrix} 37 & 4 \\ 3 & 38 \\ 2 & 39 \\ 40 & 1 \end{pmatrix}$$

Clearly, the sum over each row of any array is 41 and the sum over each column is 82.

Proposition 4 If a balanced centrally n -tuple symmetric (p_1, q) -rectangle R and a centrally n -tuple symmetric (p_2, q) -rectangle S exist, then a centrally n -tuple symmetric $(p_1 + p_2, q)$ -rectangle T exists. If S is a balanced rectangle, then T can also be chosen to be balanced.

Proof. Suppose S has type x. By Lemma 1, we know that there exists a balanced centrally n-tuple symmetric (p_1, q) -rectangle R' of type $x+np_2q/2$. Then by stacking R' and S together, we obtain a rectangle T whose rows' and columns' sum is zero. Thus, T is a centrally n-tuple symmetric (p_1+p_2, q) -rectangle of type x. If S is balanced, then it is easy to see that T is also balanced.

Since n -tuple magic (p, q) -rectangles correspond to centrally n -tuple symmetric (p, q) -rectangles of type -1/2, we have the following corollary.

Corollary 1 Suppose an n-tuple magic (p_1, q) -rectangle and a balanced centrally n-tuple symmetric (p_2, q) -rectangle exist. Then an n-tuple magic $(p_1 + p_2, q)$ -rectangle exists.

Using the concept of a centrally n -tuple symmetric rectangle, we can prove the existence of even n -tuple magic rectangles. Our tools are the balanced centrally n -tuple symmetric (2, 4) -rectangle $A := (a_{i,j}^1)(a_{i,j}^2)...(a_{i,j}^n)$ given by

$$(a_{i,j}^t) = \begin{pmatrix} 4t-3 & -4t+2 & -4t+1 & 4t \\ -4t+3 & 4t-2 & 4t-1 & -4t \end{pmatrix},$$

and the *n*-tuple magic (2, 6) -rectangle $B := (b_{i,j}^1)(b_{i,j}^2)...$ $(b_{i,j}^n)$ given by

$$b_{1,j}^{t} = \begin{cases} 1+12(n-t) & \text{if } j=1, \\ 11+12(n-t) & \text{if } j=2, \\ 3+12(n-t) & \text{if } j=3, \\ 9+12(t-1) & \text{if } j=4, \\ 8+12(t-1) & \text{if } j=5, \\ 7+12(t-1) & \text{if } j=6, \end{cases}$$

and

$$b_{2,j}^{t} = \begin{cases} 12 + 12(t-1) & \text{if } j = 1, \\ 2 + 12(t-1) & \text{if } j = 2, \\ 10 + 12(t-1) & \text{if } j = 3, \\ 4 + 12(n-t) & \text{if } j = 4, \\ 5 + 12(n-t) & \text{if } j = 5, \\ 6 + 12(n-t) & \text{if } j = 6, \end{cases}$$

for all $t \in \{1, 2, ..., n\}$.

Proposition 5 Let q > 2 be an even integer. Then an n-tuple magic (2, q)-rectangle exists.

Proof. We induct on q. The existence of n-tuple rectangles A and B shows that we need only prove the proposition for $q \ge 8$. Assume we know that an n-tuple magic (2, q')-rectangle exists for all even q' < q. Then we know an n-tuple magic (2, q-4)-rectangle R exists. By Corollary 1, we can add R and A together to form an n-tuple magic (2, q)-rectangle.

Proposition 6 Let p and q be even positive integers with $(p, q) \neq (2, 2)$. Then an n -tuple magic (p, q) -rectangle exists.

Proof. By Proposition 5, we can assume that q > 2. Using A and Proposition 4, induction shows that a balanced centrally n -tuple symmetric (p, 4) -rectangle R exists. Thus, an n -tuple magic (p, 4) -rectangle exists and we can assume that q > 4. Now assume that an n -tuple magic (p, q') -rectangle exists for all even q' < q. We then know that an n -tuple magic (p, q-4) -rectangle S exists. By Corollary 1, we can add R and S together to give an n -tuple magic (p, q) -rectangle.

Example 2 The following arrays are examples of even n -tuple magic rectangles.

A triple magic (6, 4) -rectangle

$$\begin{pmatrix} 1 & 19 & 66 & 60 \\ 50 & 68 & 17 & 11 \\ 3 & 21 & 64 & 58 \\ 70 & 52 & 9 & 15 \\ 23 & 5 & 56 & 62 \\ 72 & 54 & 7 & 13 \end{pmatrix} \begin{pmatrix} 25 & 43 & 42 & 36 \\ 26 & 44 & 41 & 35 \\ 27 & 45 & 40 & 34 \\ 46 & 28 & 33 & 39 \\ 47 & 29 & 32 & 38 \\ 48 & 30 & 31 & 37 \end{pmatrix} \begin{pmatrix} 49 & 67 & 18 & 12 \\ 2 & 20 & 65 & 59 \\ 51 & 69 & 16 & 10 \\ 22 & 4 & 57 & 63 \\ 71 & 53 & 8 & 14 \\ 24 & 6 & 55 & 61 \end{pmatrix}$$

Then each row sum of any array is 146 and each column sum of any array is 219.

A 4-tuple magic (4, 4)-rectangle

$$\begin{pmatrix} 7 & 12 & 49 & 62 \\ 50 & 61 & 8 & 11 \\ 16 & 3 & 58 & 53 \\ 57 & 54 & 15 & 4 \end{pmatrix} \begin{pmatrix} 23 & 28 & 33 & 46 \\ 34 & 45 & 24 & 27 \\ 32 & 19 & 42 & 37 \\ 41 & 38 & 31 & 20 \end{pmatrix} \begin{pmatrix} 39 & 44 & 17 & 30 \\ 18 & 29 & 40 & 43 \\ 48 & 35 & 26 & 21 \\ 25 & 22 & 47 & 36 \end{pmatrix} \begin{pmatrix} 55 & 60 & 1 & 14 \\ 2 & 13 & 56 & 59 \\ 64 & 51 & 10 & 5 \\ 9 & 6 & 63 & 52 \end{pmatrix} .$$

Then each row sum and each column sum of any array in a rectangle equals 130.

ш. The *n*-Fold Self-Union of Complete Bipartite Graphs

For any integer $n \ge 1$, the *n*-fold self-union of a graph G, denoted by nG, is the union of n disjoint copies of G. In this section we identify the sufficient condition for degree-magic labellings of the n-fold self-union of complete bipartite graphs $nK_{p,q} = K_{p,q}^1 \cup K_{p,q}^2 \cup ... \cup K_{p,q}^n$ to exist.

Theorem 3 For any integer $n \ge 1$ and even integers p, q > 1, let $K_{p,q}^t$ be the $t^{\underline{th}}$ copy of $K_{p,q}$ for all $t \in \{1, 2, ..., n\}$. A mapping f from $E(nK_{p,q})$ into positive integers given by

$$f(u_i^t v_j^t) = r_{i,j}^t$$
 for every $u_i^t v_j^t \in E(K_{p,q}^t)$,

is a d-magic labelling of $nK_{p,q}$ if and only if $R := (r_{i,j}^1)(r_{i,j}^2)$... $(r_{i,j}^n)$ is an n-tuple magic (p,q)-rectangle.

Proof. Let $U^t = \{u_1^t, u_2^t, ..., u_p^t\}$ and $V^t = \{v_1^t, v_2^t, ..., v_q^t\}$ be partite sets of $K_{p,q}^t$. Suppose that R is an n-tuple magic (p, q)-rectangle. Then f is a bijection from $E(nK_{p,q})$ onto $\{1, 2, ..., npq\}$. For any $u_i^t \in U^t$, we have

$$f^*(u_i^t) = \sum_{j=1}^q f(u_i^t v_j^t) = \sum_{j=1}^q r_{i,j}^t$$
$$= \frac{q(npq+1)}{2} = \frac{npq+1}{2} \deg(u_i^t),$$

and for any $v_i^t \in V^t$, we have

$$f^*(v_j^t) = \sum_{i=1}^p f(u_i^t v_j^t) = \sum_{i=1}^p r_{i,j}^t$$
$$= \frac{p(npq+1)}{2} = \frac{npq+1}{2} \deg(v_j^t).$$

i.e., f is a d-magic labelling of $nK_{p,q}$.

Now suppose that f is a d-magic labelling of $nK_{p,q}$. For all $1 \le i \ne s \le p$, we have

$$\sum_{j=1}^{q} r_{i,j}^{t} = \sum_{j=1}^{q} f(u_{i}^{t} v_{j}^{t}) = f^{*}(u_{i}^{t})$$

$$= f^{*}(u_{s}^{t}) = \sum_{i=1}^{q} f(u_{s}^{t} v_{j}^{t}) = \sum_{i=1}^{q} r_{s,j}^{t}.$$
(5)

For all $1 \le j \ne z \le q$, we have

$$\sum_{i=1}^{p} r_{i,j}^{t} = \sum_{i=1}^{p} f(u_{i}^{t} v_{j}^{t}) = f^{*}(v_{j}^{t})$$

$$= f^{*}(v_{z}^{t}) = \sum_{i=1}^{p} f(u_{i}^{t} v_{z}^{t}) = \sum_{i=1}^{p} r_{i,z}^{t}.$$
(6)

By (5), we have

$$\sum_{i=1}^{q} r_{i,j}^{t} = \sum_{i=1}^{q} r_{s,j}^{t} = \frac{q(npq+1)}{2}.$$

By (6), we have

$$\sum_{i=1}^{p} r_{i,j}^{t} = \sum_{i=1}^{p} r_{i,z}^{t} = \frac{p(npq+1)}{2}.$$

Therefore, R is an n-tuple magic (p, q)-rectangle.

According to Theorem 3 and Proposition 6, we obtain the following result.

Proposition 7 Let p and q be even positive integers with $(p, q) \neq (2, 2)$. Then $nK_{p,q}$ is a d-magic graph for all integers $n \geq 1$.

Example 3 We can construct a d-magic graph $3K_{4,8}$ (see Figure 1) with the labels on edges $u_i^t v_j^t$ of $3K_{4,8}$, where $1 \le i \le 4$, $1 \le j \le 8$ and $1 \le t \le 3$, in TABLE I.

Figure 1. A d-magic graph $3K_{4,8}$.

TABLE I. THE LABELS ON EDGES OF D-MAGIC GRAPH $3K_{4.8}$

Vertices	v_1^1	v_{2}^{1}	v_{3}^{1}	v_{4}^{1}	v ₅ ¹	v_6^1	v ₇ ¹	v_8^1
u_1^1	1	8	93	92	9	16	85	84
u_2^1	6	3	90	95	14	11	82	87
u_3^1	91	94	4	5	83	86	12	13
u_4^1	96	89	7	2	88	81	15	10
Vertices	v ₁ ²	v ₂ ²	v ₃ ²	v ₄ ²	v ₅ ²	v ₆ ²	v ₇ ²	v ₈ ²
u_1^2	33	40	61	60	41	48	53	52
u_2^2	38	35	58	63	46	43	50	55
u_3^2	59	62	36	37	51	54	44	45
u_4^2	64	57	39	34	56	49	47	42
Vertices	v ₁ ³	v ₂ ³	v ₃ ³	v_4^{3}	v ₅ ³	v ₆ ³	v ₇ ³	v ₈ ³
u_1^3	65	72	29	28	73	80	21	20
u_2^3	70	67	26	31	78	75	18	23
u_3^3	27	30	68	69	19	22	76	77
u_4^3	32	25	71	66	24	17	79	74

Acknowledgments

This work was supported by Rajamangala University of Technology Lanna and Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi, Thailand.

References

- T. Harmuth, "Über magische Quadrate und ähniche Zahlenfiguren," Arch. Math. Phys., vol. 66, pp. 286-313, 1881.
- [2] T. Harmuth, "Über magische Rechtecke mit ungeraden Seitenzahlen," Arch. Math. Phys., vol. 66, pp. 413-447, 1881.
- [3] R. Sun, "Existence of magic rectangles," Nei Mongol Daxue Xuebao Ziran Kexue, vol. 21, no. 1, pp. 10-16, 1990.
- [4] T. Bier and G. Rogers, "Balanced magic rectangles," European J. Combin., vol. 14, pp. 285-299, 1993.
- [5] T. Bier and A. Kleinschmidt, "Centrally symmetric and magic rectangles," Discrete Math., vol. 176, pp. 29-42, 1997.
- [6] T. Hagedorn, "Magic rectangles revisited," Discrete Math., vol. 207, pp. 65-72, 1999.
- [7] T. Hagedorn, "On the existence of magic n-dimensional rectangles," Discrete Math., vol. 207, pp. 53-63, 1999.
- [8] J. Sedláček, "Theory of graphs and its applications," Proc. Symp. Smolenice, Problem 27, Praha, pp. 163-164, 1963.
- [9] B.M. Stewart, "Magic graphs," Canad. J. Math., Vol.18, pp. 1031-1059, 1966.

- [10] J.A. Gallian, "A dynamic survey of graph labeling," Electron. J. Combin., #DS6, vol.16, 2009.
- [11] L'. Bezegová and J. Ivančo, "An extension of regular supermagic graphs," Discrete Math., vol. 310, pp. 3571-3578, 2010.

