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On the Existence of n -Tuple Magic Rectangles 
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Abstract—Magic rectangles are a classical generalization       

of the well-known magic squares, and they are related to   

graphs. A graph G  is called degree-magic if there is a labelling 

of the edges by integers 1, 2, ..., | ( ) |E G  such that the sum of    

the labels of the edges incident with any vertex v  is equal           

to (1 | ( ) |)deg( ) / 2.E G v  In this paper we generalize magic 

rectangles to be n -tuple magic rectangles, and prove the 

necessary and sufficient conditions for the existence of even n -

tuple magic rectangles. Using this existence we identify the 

sufficient condition for degree-magic labellings of the n -fold self-

union of complete bipartite graphs to exist. 

Keywords—magic squares, magic rectangles, degree-magic 

graphs 

I. Introduction 
Magic rectangles are a natural generalization of the magic 

squares which have widely intrigued mathematicians and the 
general public. A magic ( , )p q -rectangle R  is a p q  array 

in which the first pq  positive integers are placed such that the 

sum over each row of R  is constant and the sum over each 
column of R  is another (different if p q ) constant. 

Harmuth [1, 2] studied magic rectangles over a century ago 
and proved that 

Theorem 1 ([1, 2]) For , 1,p q   there is a magic ( , )p q -

rectangle R  if and only if (mod 2)p q  and ( , )p q   

(2, 2).  

In 1990, Sun [3] studied the existence of magic rectangles. 
Later, Bier and Rogers [4] studied balanced magic rectangles, 
and Bier and Kleinschmidt [5] studied centrally symmetric and 
magic rectangles. Then Hagedorn [6] presented a simplified 
modern proof of the necessary and sufficient conditions for a 
magic rectangle to exist. The concept of magic rectangles was 
generalized to n -dimensions and several existence theorems 

were proven by Hagedorn [7]. 

For simple graphs without isolated vertices, if G  is a 

graph, then ( )V G  and ( )E G  stand for the vertex set and the 

edge set of ,G  respectively. Cardinalities of these sets are 

called the order and size of .G  

Let a graph G  and a mapping f  from ( )E G  into positive  

integers be given. The index mapping of f  is the mapping f    

from ( )V G  into positive integers defined by 
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( )

( ) ( , ) ( )
e E G

f v v e f e



     for every   ( ),v V G       (1) 

where ( , )v e  is equal to 1  when e  is an edge incident with a 

vertex ,v  and 0  otherwise. An injective mapping f  from 

( )E G  into positive integers is called a magic labelling of G  

for an index   if its index mapping f   satisfies 

             ( )f v      for all   ( ).v V G           (2) 

A magic labelling f  of a graph G  is called a supermagic 

labelling if the set  ( ) : ( )f e e E G  consists of consecutive 

positive integers. A graph G  is supermagic (magic) whenever 

a supermagic (magic) labelling of G  exists. 

A bijective mapping f  from ( )E G  into {1, 2, ..., | ( ) |}E G  

is called a degree-magic labelling (or only d-magic labelling) 

of a graph G  if its index mapping f   satisfies 

 
1 | ( ) |

( ) deg( )
2

E G
f v v 

    for all   ( ).v V G        (3) 

A d-magic labelling f  of G  is called balanced if for all 

( ),v V G  the following equation is satisfied 

           
 

 

( ) : ( , ) 1, ( ) | ( ) | /2

( ) : ( , ) 1, ( ) | ( ) | /2 .

e E G v e f e E G

e E G v e f e E G





     

      

    (4) 

A graph G  is degree-magic (balanced degree-magic) or only 

d-magic when a d-magic (balanced d-magic) labelling of G  

exists. 

The concept of magic graphs was introduced by Sedláček 
[8]. Later, supermagic graphs were introduced by Stewart [9]. 
There are now many papers published on magic and 
supermagic graphs; we refer the reader to Gallian [10] for 
more comprehensive references. Recently, the concept of 
degree-magic graphs was introduced by Bezegová and Ivančo 
[11] as an extension of supermagic regular graphs. They also 
established the basic properties of degree-magic graphs and 
proved that 

Proposition 1 ([11]) For , 1,p q   the complete bipartite 

graph ,p qK  is d-magic if and only if (mod 2)p q  and 

( , ) (2, 2).p q   

Theorem 2 ([11]) The complete bipartite graph ,p qK  is 

balanced d-magic if and only if the following statements hold: 
(i) 0 (mod 2);p q   

(ii) if 2 (mod 4),p q   then min{ , } 6.p q   

In this paper we introduce n -tuple magic rectangles. To 

show their existence, we introduce the closely related concept 
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of centrally n -tuple symmetric rectangles. Then we use the 

existence of centrally n -tuple symmetric rectangles to give a 

construction of even n -tuple magic rectangles. Finally, we 

identify the sufficient condition for d-magic labellings of the 
n -fold self-union of complete bipartite graphs to exist. 

II. The n-Tuple Magic Rectangles 
In this section we introduce n -tuple magic rectangles and 

prove the necessary and sufficient conditions for even n -tuple 

magic rectangles to exist. 

Definition 1 An n -tuple magic ( , )p q -rectangle 1

,: ( )i jR r  

2

, ,( )...( )n

i j i jr r  is a class of n  arrays in which each array has p  

rows and q  columns, and the first npq  positive integers are 

placed such that the sum over each row of any array of R  is 
constant and the sum over each column of R  is another 
(different if p q ) constant. 

Let 1 2

, , ,: ( )( )...( )n

i j i j i jR r r r  be an n -tuple magic ( , )p q -

rectangle. As each row sum of any array of R  is 
( 1) / 2q npq  and each column sum of R  is ( 1) / 2p npq  

and both are integer, we then have 

Proposition 2 If R  is an n -tuple magic ( , )p q -rectangle, 

then the following statements hold: 
(i) if n  is odd, then (mod 2);p q  

(ii) if n  is even, then 0 (mod 2).p q   

Proposition 2 allows the set of n -tuple magic rectangles to 

be divided into sets of odd and even rectangles. We quickly 
see that an n -tuple magic (2, 2) -rectangle does not exist. To 

show the existence of other even n -tuple magic rectangles, we 

introduce the closely related concept of centrally n -tuple 

symmetric ( , )p q -rectangles as follows. 

Definition 2 Let 1x    and let R  be a class of n  even 

rectangular arrays in which each array has p  rows and q  

columns and the entries of R  are numbers ( 1), ...,x   

( / 2).x npq   R  is a centrally n -tuple symmetric ( , )p q -

rectangle of type x  if the sum over each row and column of 

any array is zero. Additionally, if R  has an equal number of 
positive and negative numbers in each row and column of any 
array, we say that R  is balanced. 

If R  is an even n -tuple magic ( , )p q -rectangle, then by 

subtracting ( 1) / 2npq  from each entry of ,R  we obtain a 

centrally n -tuple symmetric ( , )p q -rectangle of type 1/ 2.  

Similarly, every centrally n -tuple symmetric ( , )p q -rectangle 

of type 1/ 2  determines an even n -tuple magic ( , )p q -

rectangle. Thus, we can use the existence of centrally n -tuple 

symmetric ( , )p q -rectangles to prove the existence of even 

n -tuple magic ( , )p q -rectangles. 

 

 

Lemma 1 For , 1,x y    if a balanced centrally n -tuple 

symmetric ( , )p q -rectangle of type x  exists, then a balanced 

centrally n -tuple symmetric ( , )p q -rectangle of type y  

exists. 

Proof. Suppose that 1 2

, , ,: ( )( )...( )n

i j i j i jR r r r  is the given 

rectangle. Then we define a ( , )p q -rectangle 1 2

, ,: ( ) ( )i j i jS s s  

,...( )n

i js  by 

, , ,( )sgn( ) ,t t t

i j i j i js y x r r      for every   {1, 2, ..., }.t n  

The entries of S  are the numbers ( 1), ..., ( / 2).y y npq      

For any {1, 2, ..., }t n  and 1 i p  , the sum of each row is 

 , , ,

1 1

, ,

1 1

( )sgn( )

( ) sgn( ) 0,

q q
t t t

i j i j i j

j j

q q
t t

i j i j

j j

s y x r r

y x r r

 

 

  

   

 

 

 

and for all 1 j q  , the sum of each column is 

 , , ,

1 1

, ,

1 1

( )sgn( )

( ) sgn( ) 0.

 

 

  

   

 

 

p p
t t t

i j i j i j

i i

p p
t t

i j i j

i i

s y x r r

y x r r

 

Thus, S  is a centrally n -tuple symmetric ( , )p q -rectangle of 

type .y  For any {1, 2, ..., },t n  if ,

t

i jr  is positive, then , t

i jr  

x m  for some 1.m   Hence, ,

t

i js y m   is also positive. 

Similarly, ,

t

i jr  negative implies ,

t

i js  negative. Therefore, S  is 

balanced.                 

Proposition 3 If a balanced centrally n -tuple symmetric 

( , )p q -rectangle exists, then an n -tuple magic ( , )p q -

rectangle exists. 

Proof. Suppose R  is the given rectangle. If R  has type ,x  

then by Lemma 1, there exists a balanced centrally n -tuple 

symmetric ( , )p q -rectangle of type 1/ 2.  Therefore, an n -

tuple magic ( , )p q -rectangle exists.             

Example 1 We consider a balanced centrally 5 -tuple 

symmetric (4, 2) -rectangle 
1 2 5

, , ,: ( )( )...( )i j i j i jR r r r  of type 1  as 

follows. 

2 2 6 6 10 10 14 14 18 18

3 3 7 7 11 11 15 15 19 19
: .

4 4 8 8 12 12 16 16 20 20

5 5 9 9 13 13 17 17 21 21

             
         
             
             
         

             

R  

Then we define a 5 -tuple (4, 2) -rectangle 
1 2

, ,: ( ) ( )i j i jS s s  

5

,...( )i js  related to R  by 

, , ,

3
sgn( ) ,

2

t t t

i j i j i js r r      for every   {1, 2, 3, 4, 5}.t  
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Thus, S  is a balanced centrally 5 -tuple symmetric (4, 2) -

rectangle S  of type 1/ 2  as follows. 

1 1 9 9 17 17 25 25 33 33

2 2 2 2 2 2 2 2 2 2

3 3 11 11 19 19 27 27

2 2 2 2 2 2 2 2
:

5 5 13 13 21 21 29 29

2 2 2 2 2 2 2 2

7 7 15 15 23 23 31 31

2 2 2 2 2 2 2 2

S

       
           

       
          
       

       
          
       
       
          
       

35 35

2 2
.

37 37

2 2

39 39

2 2

 
 
 
 
 
 
 
 
 
 
 

 

By adding 41/ 2  to each entry of ,S  we obtain a 5 -tuple 

magic (4, 2) -rectangle T  as below. 

21 20 25 16 29 12 33 8 37 4

19 22 15 26 11 30 7 34 3 38
: .

18 23 14 27 10 31 6 35 2 39

24 17 28 13 32 9 36 5 40 1

T

         
         
         
         
         
         

 

Clearly, the sum over each row of any array is 41  and the sum 
over each column is 82.  

Proposition 4 If a balanced centrally n -tuple symmetric 

1( , )p q -rectangle R  and a centrally n -tuple symmetric 

2( , )p q -rectangle S  exist, then a centrally n -tuple 

symmetric 
1 2( , )p p q -rectangle T  exists. If S  is a balanced 

rectangle, then T  can also be chosen to be balanced. 

Proof. Suppose S  has type .x  By Lemma 1, we know that 

there exists a balanced centrally n -tuple symmetric 
1( , )p q -

rectangle R  of type 2 / 2.x np q  Then by stacking R  and 

S  together, we obtain a rectangle T  whose rows’ and 

columns’ sum is zero. Thus, T  is a centrally n -tuple 

symmetric 
1 2( , )p p q -rectangle of type .x  If S  is balanced, 

then it is easy to see that T  is also balanced.             

Since n -tuple magic ( , )p q -rectangles correspond to 

centrally n -tuple symmetric ( , )p q -rectangles of type 1/ 2,  

we have the following corollary. 

Corollary 1 Suppose an n -tuple magic 
1( , )p q -rectangle and 

a balanced centrally n -tuple symmetric 2( , )p q -rectangle 

exist. Then an n -tuple magic 1 2( , )p p q -rectangle exists. 

Using the concept of a centrally n -tuple symmetric 

rectangle, we can prove the existence of even n -tuple magic 

rectangles. Our tools are the balanced centrally n -tuple 

symmetric (2, 4) -rectangle 
1 2

, , ,: ( )( )...( )n

i j i j i jA a a a  given by 

,

4 3 4 2 4 1 4
( ) ,

4 3 4 2 4 1 4

t

i j

t t t t
a

t t t t

     
 

     
 

and the n -tuple magic (2, 6) -rectangle 
1 2

, ,: ( )( )... i j i jB b b  

,( )n

i jb  given by 

 

 

1,

1 12( )    if   1,

11 12( )  if   2,

3 12( )   if   3,

9 12( 1)    if   4,

8 12( 1)    if   5,

7 12( 1)    if   6,    

t

j

n t j

n t j

n t j
b

t j

t j

t j

  
   

   

 
  

   


  

 

and 

2,

12 12( -1) if  1,

2 12( -1) if 2,

10 12( -1) if   3,

4 12( - )   if   4,

5 12( - )   if 5,

6 12( - )  if   6,    

 
  

  

 
 

  


 

t

j

t j

t j

t j
b

n t j

n t j

n t j

 

for all {1, 2, ..., }.t n  

Proposition 5 Let 2q   be an even integer. Then an n -tuple 

magic (2, )q -rectangle exists. 

Proof. We induct on .q  The existence of n -tuple rectangles 

A  and B  shows that we need only prove the proposition for 

8.q   Assume we know that an n -tuple magic (2, )q -

rectangle exists for all even .q q   Then we know an n -tuple 

magic (2, 4)q -rectangle R  exists. By Corollary 1, we can 

add R  and A  together to form an n -tuple magic (2, )q -

rectangle.                

Proposition 6 Let p  and q  be even positive integers with 

( , ) (2, 2).p q   Then an n -tuple magic ( , )p q -rectangle 

exists. 

Proof. By Proposition 5, we can assume that 2.q   Using A  

and Proposition 4, induction shows that a balanced centrally 
n -tuple symmetric ( , 4)p -rectangle R  exists. Thus, an n -

tuple magic ( , 4)p -rectangle exists and we can assume that 

4.q   Now assume that an n -tuple magic ( , )p q -rectangle 

exists for all even .q q   We then know that an n -tuple 

magic ( , 4)p q -rectangle S  exists. By Corollary 1, we can 

add R  and S  together to give an n -tuple magic ( , )p q -

rectangle.                

Example 2 The following arrays are examples of even n -

tuple magic rectangles. 

A triple magic (6, 4) -rectangle 

1 19 66 60 25 43 42 36 49 67 18 12

50 68 17 11 26 44 41 35 2 20 65 59

3 21 64 58 27 45 40 34 51 69 16 10
.

70 52 9 15 46 28 33 39 22 4 57 63

23 5 56 62 47 29 32 38 71 53 8 14

72 54 7 13 48 30 31 37 24 6 55 61

     
     
     
     
     
     
     
          
     
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Then each row sum of any array is 146 and each column sum 
of any array is 219. 

A 4 -tuple magic (4, 4) -rectangle 

7 12 49 62 23 28 33 46 39 44 17 30 55 60 1 14

50 61 8 11 34 45 24 27 18 29 40 43 2 13 56 59
.

16 3 58 53 32 19 42 37 48 35 26 21 64 51 10 5

57 54 15 4 41 38 31 20 25 22 47 36 9 6 63 52

       
       
       
       
       
       

 

Then each row sum and each column sum of any array in a 
rectangle equals 130. 

III. The n-Fold Self-Union of 
Complete Bipartite Graphs 

For any integer 1,n   the n -fold self-union of a graph ,G  

denoted by ,nG  is the union of n  disjoint copies of .G  In this 

section we identify the sufficient condition for degree-magic 
labellings of the n -fold self-union of complete bipartite 

graphs 1 2

, , , ,... n

p q p q p q p qnK K K K     to exist. 

Theorem 3 For any integer 1n   and even integers , 1,p q   

let ,

t

p qK  be the tht  copy of 
,p qK  for all {1, 2, ..., }.t n  A 

mapping f  from 
,( )p qE nK  into positive integers given by 

,( )t t t

i j i jf u v r    for every   ,( ),t t t

i j p qu v E K  

is a d-magic labelling of ,p qnK  if and only if 1 2

, ,: ( ) ( ) i j i jR r r  

,...( )n

i jr  is an n -tuple magic ( , )p q -rectangle. 

Proof. Let 1 2{ , , ..., }t t t t

pU u u u  and 1 2{ , , ..., }t t t t

qV v v v  be 

partite sets of , .t

p qK  Suppose that R  is an n -tuple magic 

( , )p q -rectangle. Then f  is a bijection from ,( )p qE nK  onto 

{1, 2, ..., }.npq  For any ,t t

iu U  we have 

,

1 1

( ) ( )

( 1) 1
deg( ),

2 2



 

 

 
 

 
q q

t t t t

i i j i j

j j

t

i

f u f u v r

q npq npq
u

 

and for any ,t t

jv V  we have 

,

1 1

( ) ( )

( 1) 1
deg( ).

2 2



 

 

 
 

 
p p

t t t t

j i j i j

i i

t

j

f v f u v r

p npq npq
v

 

i.e., f  is a d-magic labelling of , .p qnK  

Now suppose that f  is a d-magic labelling of , .p qnK  For 

all 1 ,i s p    we have 

 

 

                     

,

1 1

,

1 1

( ) ( )

( ) ( ) .



 



 

 

  

 

 

q q
t t t t

i j i j i

j j

q q
t t t t

s s j s j

j j

r f u v f u

f u f u v r

          (5) 

For all 1 ,j z q    we have 

                     

,

1 1

,

1 1

( ) ( )

( ) ( ) .



 



 

 

  

 

 

p p
t t t t

i j i j j

i i

p p
t t t t

z i z i z

i i

r f u v f v

f v f u v r

          (6) 

By (5), we have 

, ,

1 1

( 1)
.

2

q q
t t

i j s j

j j

q npq
r r

 


    

By (6), we have 

, ,

1 1

( 1)
.

2

p p
t t

i j i z

i i

p npq
r r

 


    

Therefore, R  is an n -tuple magic ( , )p q -rectangle.            

According to Theorem 3 and Proposition 6, we obtain the 
following result. 

Proposition 7 Let p  and q  be even positive integers with 

( , ) (2, 2).p q   Then 
,p qnK  is a d-magic graph for all integers 

1.n   

Example 3 We can construct a d-magic graph 4,83K  (see 

Figure 1) with the labels on edges 
t t

i ju v  of 4,83 ,K  where 

1 4,i   1 8j   and 1 3t  , in TABLE I. 

 

Figure 1. A d-magic graph 4,83 .K  
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TABLE I. THE LABELS ON EDGES OF D-MAGIC GRAPH 
4,83K  

Vertices 
1

1v  1

2v  1

3v  1

4v  1

5v  1

6v  1

7v  1

8v  

1

1u    1   8 93 92   9 16 85 84 

1

2u    6   3 90 95 14 11 82 87 

1

3u  91 94   4   5 83 86 12 13 

1

4u  96 89   7   2 88 81 15 10 

 

Vertices 
2

1v  2

2v  2

3v  2

4v  2

5v  2

6v  2

7v  2

8v  

2

1u  33 40 61 60 41 48 53 52 

2

2u  38 35 58 63 46 43 50 55 

2

3u  59 62 36 37 51 54 44 45 

2

4u  64 57 39 34 56 49 47 42 

 

Vertices 
3

1v  3

2v  3

3v  3

4v  3

5v  3

6v  3

7v  3

8v  

3

1u  65 72 29 28 73 80 21 20 

3

2u  70 67 26 31 78 75 18 23 

3

3u  27 30 68 69 19 22 76 77 

3

4u  32 25 71 66 24 17 79 74 
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