On the Existence of n-Tuple Magic Rectangles

Phaisatcha Inpoonjai and Thiradet Jiarasuksakun

Abstract

Magic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph G is called degree-magic if there is a labelling of the edges by integers $1,2, \ldots,|E(G)|$ such that the sum of the labels of the edges incident with any vertex v is equal to $(1+|E(G)|) \operatorname{deg}(v) / 2$. In this paper we generalize magic rectangles to be n-tuple magic rectangles, and prove the necessary and sufficient conditions for the existence of even \boldsymbol{n} tuple magic rectangles. Using this existence we identify the sufficient condition for degree-magic labellings of the \boldsymbol{n}-fold selfunion of complete bipartite graphs to exist.

Keywords-magic squares, magic rectangles, degree-magic graphs

I. Introduction

Magic rectangles are a natural generalization of the magic squares which have widely intrigued mathematicians and the general public. A magic (p, q)-rectangle R is a $p \times q$ array in which the first $p q$ positive integers are placed such that the sum over each row of R is constant and the sum over each column of R is another (different if $p \neq q$) constant. Harmuth [1,2] studied magic rectangles over a century ago and proved that

Theorem 1 ([1, 2]) For $p, q>1$, there is a magic (p, q) rectangle R if and only if $p \equiv q(\bmod 2)$ and $(p, q) \neq$ $(2,2)$.

In 1990, Sun [3] studied the existence of magic rectangles. Later, Bier and Rogers [4] studied balanced magic rectangles, and Bier and Kleinschmidt [5] studied centrally symmetric and magic rectangles. Then Hagedorn [6] presented a simplified modern proof of the necessary and sufficient conditions for a magic rectangle to exist. The concept of magic rectangles was generalized to n-dimensions and several existence theorems were proven by Hagedorn [7].

For simple graphs without isolated vertices, if G is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and the edge set of G, respectively. Cardinalities of these sets are called the order and size of G.

Let a graph G and a mapping f from $E(G)$ into positive integers be given. The index mapping of f is the mapping f^{*} from $V(G)$ into positive integers defined by

[^0]\[

$$
\begin{equation*}
f^{*}(v)=\sum_{e \in E(G)} \eta(v, e) f(e) \quad \text { for every } \quad v \in V(G) \tag{1}
\end{equation*}
$$

\]

where $\eta(v, e)$ is equal to 1 when e is an edge incident with a vertex v, and 0 otherwise. An injective mapping f from $E(G)$ into positive integers is called a magic labelling of G for an index λ if its index mapping f^{*} satisfies

$$
\begin{equation*}
f^{*}(v)=\lambda \quad \text { for all } \quad v \in V(G) \tag{2}
\end{equation*}
$$

A magic labelling f of a graph G is called a supermagic labelling if the set $\{f(e): e \in E(G)\}$ consists of consecutive positive integers. A graph G is supermagic (magic) whenever a supermagic (magic) labelling of G exists.

A bijective mapping f from $E(G)$ into $\{1,2, \ldots,|E(G)|\}$ is called a degree-magic labelling (or only d-magic labelling) of a graph G if its index mapping f^{*} satisfies

$$
\begin{equation*}
f^{*}(v)=\frac{1+|E(G)|}{2} \operatorname{deg}(v) \quad \text { for all } \quad v \in V(G) \tag{3}
\end{equation*}
$$

A d-magic labelling f of G is called balanced if for all $v \in V(G)$, the following equation is satisfied

$$
\begin{align*}
\mid\{e & \in E(G): \eta(v, e)=1, f(e) \leq\lfloor|E(G)| / 2\rfloor\} \mid \\
& =|\{e \in E(G): \eta(v, e)=1, f(e)>\lfloor|E(G)| / 2\rfloor\}| \tag{4}
\end{align*}
$$

A graph G is degree-magic (balanced degree-magic) or only d-magic when a d-magic (balanced d-magic) labelling of G exists.

The concept of magic graphs was introduced by Sedláček [8]. Later, supermagic graphs were introduced by Stewart [9]. There are now many papers published on magic and supermagic graphs; we refer the reader to Gallian [10] for more comprehensive references. Recently, the concept of degree-magic graphs was introduced by Bezegová and Ivančo [11] as an extension of supermagic regular graphs. They also established the basic properties of degree-magic graphs and proved that
Proposition 1 ([11]) For $p, q>1$, the complete bipartite graph $K_{p, q}$ is d-magic if and only if $p \equiv q(\bmod 2)$ and $(p, q) \neq(2,2)$.

Theorem 2 ([11]) The complete bipartite graph $K_{p, q}$ is balanced d-magic if and only if the following statements hold:
(i) $p \equiv q \equiv 0(\bmod 2)$;
(ii) if $p \equiv q \equiv 2(\bmod 4)$, then $\min \{p, q\} \geq 6$.

In this paper we introduce n-tuple magic rectangles. To show their existence, we introduce the closely related concept
of centrally n-tuple symmetric rectangles. Then we use the existence of centrally n-tuple symmetric rectangles to give a construction of even n-tuple magic rectangles. Finally, we identify the sufficient condition for d-magic labellings of the n-fold self-union of complete bipartite graphs to exist.

II. The \boldsymbol{n}-Tuple Magic Rectangles

In this section we introduce n-tuple magic rectangles and prove the necessary and sufficient conditions for even n-tuple magic rectangles to exist.
Definition 1 An n-tuple magic (p, q)-rectangle $R:=\left(r_{i, j}^{1}\right)$ $\left(r_{i, j}^{2}\right) \ldots\left(r_{i, j}^{n}\right)$ is a class of n arrays in which each array has p rows and q columns, and the first $n p q$ positive integers are placed such that the sum over each row of any array of R is constant and the sum over each column of R is another (different if $p \neq q$) constant.

Let $R:=\left(r_{i, j}^{1}\right)\left(r_{i, j}^{2}\right) \ldots\left(r_{i, j}^{n}\right)$ be an n-tuple magic $(p, q)-$ rectangle. As each row sum of any array of R is $q(n p q+1) / 2$ and each column sum of R is $p(n p q+1) / 2$ and both are integer, we then have
Proposition 2 If R is an n-tuple magic (p, q)-rectangle, then the following statements hold:
(i) if n is odd, then $p \equiv q(\bmod 2)$;
(ii) if n is even, then $p \equiv q \equiv 0(\bmod 2)$.

Proposition 2 allows the set of n-tuple magic rectangles to be divided into sets of odd and even rectangles. We quickly see that an n-tuple magic (2,2)-rectangle does not exist. To show the existence of other even n-tuple magic rectangles, we introduce the closely related concept of centrally n-tuple symmetric (p, q)-rectangles as follows.

Definition 2 Let $x>-1$ and let R be a class of n even rectangular arrays in which each array has p rows and q columns and the entries of R are numbers $\pm(x+1), \ldots$, $\pm(x+n p q / 2) . \quad R$ is a centrally n-tuple symmetric (p, q) rectangle of type x if the sum over each row and column of any array is zero. Additionally, if R has an equal number of positive and negative numbers in each row and column of any array, we say that R is balanced.

If R is an even n-tuple magic (p, q) -rectangle, then by subtracting $(n p q+1) / 2$ from each entry of R, we obtain a centrally n-tuple symmetric (p, q)-rectangle of type $-1 / 2$. Similarly, every centrally n-tuple symmetric (p, q)-rectangle of type $-1 / 2$ determines an even n-tuple magic (p, q) rectangle. Thus, we can use the existence of centrally n-tuple symmetric (p, q)-rectangles to prove the existence of even n-tuple magic (p, q)-rectangles.

Lemma 1 For $x, y>-1$, if a balanced centrally n-tuple symmetric (p, q)-rectangle of type x exists, then a balanced centrally n-tuple symmetric (p, q)-rectangle of type y exists.

Proof. Suppose that $R:=\left(r_{i, j}^{1}\right)\left(r_{i, j}^{2}\right) \ldots\left(r_{i, j}^{n}\right)$ is the given rectangle. Then we define a (p, q)-rectangle $S:=\left(s_{i, j}^{1}\right)\left(s_{i, j}^{2}\right)$ $\ldots\left(s_{i, j}^{n}\right)$ by

$$
s_{i, j}^{t}=(y-x) \operatorname{sgn}\left(r_{i, j}^{t}\right)+r_{i, j}^{t}, \quad \text { for every } \quad t \in\{1,2, \ldots, n\} .
$$

The entries of S are the numbers $\pm(y+1), \ldots, \pm(y+n p q / 2)$. For any $t \in\{1,2, \ldots, n\}$ and $1 \leq i \leq p$, the sum of each row is

$$
\begin{aligned}
\sum_{j=1}^{q} s_{i, j}^{t} & =\sum_{j=1}^{q}\left((y-x) \operatorname{sgn}\left(r_{i, j}^{t}\right)+r_{i, j}^{t}\right) \\
& =(y-x) \sum_{j=1}^{q} \operatorname{sgn}\left(r_{i, j}^{t}\right)+\sum_{j=1}^{q} r_{i, j}^{t}=0,
\end{aligned}
$$

and for all $1 \leq j \leq q$, the sum of each column is

$$
\begin{aligned}
\sum_{i=1}^{p} s_{i, j}^{t} & =\sum_{i=1}^{p}\left((y-x) \operatorname{sgn}\left(r_{i, j}^{t}\right)+r_{i, j}^{t}\right) \\
& =(y-x) \sum_{i=1}^{p} \operatorname{sgn}\left(r_{i, j}^{t}\right)+\sum_{i=1}^{p} r_{i, j}^{t}=0 .
\end{aligned}
$$

Thus, S is a centrally n-tuple symmetric (p, q)-rectangle of type y. For any $t \in\{1,2, \ldots, n\}$, if $r_{i, j}^{t}$ is positive, then $r_{i, j}^{t}=$ $x+m$ for some $m \geq 1$. Hence, $s_{i, j}^{t}=y+m$ is also positive. Similarly, $r_{i, j}^{t}$ negative implies $s_{i, j}^{t}$ negative. Therefore, S is balanced.

Proposition 3 If a balanced centrally n-tuple symmetric (p, q) -rectangle exists, then an n-tuple magic (p, q) rectangle exists.
Proof. Suppose R is the given rectangle. If R has type x, then by Lemma 1 , there exists a balanced centrally n-tuple symmetric (p, q)-rectangle of type $-1 / 2$. Therefore, an $n-$ tuple magic (p, q)-rectangle exists.

Example 1 We consider a balanced centrally 5 -tuple symmetric $(4,2)$-rectangle $R:=\left(r_{i, j}^{1}\right)\left(r_{i, j}^{2}\right) \ldots\left(r_{i, j}^{5}\right)$ of type 1 as follows.

$$
R:=\left(\begin{array}{rr}
2 & -2 \\
-3 & 3 \\
-4 & 4 \\
5 & -5
\end{array}\right)\left(\begin{array}{rr}
6 & -6 \\
-7 & 7 \\
-8 & 8 \\
9 & -9
\end{array}\right)\left(\begin{array}{rr}
10 & -10 \\
-11 & 11 \\
-12 & 12 \\
13 & -13
\end{array}\right)\left(\begin{array}{rr}
14 & -14 \\
-15 & 15 \\
-16 & 16 \\
17 & -17
\end{array}\right)\left(\begin{array}{rr}
18 & -18 \\
-19 & 19 \\
-20 & 20 \\
21 & -21
\end{array}\right) .
$$

Then we define a 5 -tuple $(4,2)$-rectangle $S:=\left(s_{i, j}^{1}\right)\left(s_{i, j}^{2}\right)$ $\ldots\left(s_{i, j}^{5}\right)$ related to R by

$$
s_{i, j}^{t}=-\frac{3}{2} \operatorname{sgn}\left(r_{i, j}^{t}\right)+r_{i, j}^{t}, \quad \text { for every } \quad t \in\{1,2,3,4,5\}
$$

Thus, S is a balanced centrally 5 -tuple symmetric $(4,2)$ rectangle S of type $-1 / 2$ as follows.

$$
S:=\left(\begin{array}{rr}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{3}{2} & \frac{3}{2} \\
-\frac{5}{2} & \frac{5}{2} \\
\frac{7}{2} & -\frac{7}{2}
\end{array}\right)\left(\begin{array}{rr}
\frac{9}{2} & -\frac{9}{2} \\
-\frac{11}{2} & \frac{11}{2} \\
-\frac{13}{2} & \frac{13}{2} \\
\frac{15}{2} & -\frac{15}{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{17}{2} & -\frac{17}{2} \\
-\frac{19}{2} & \frac{19}{2} \\
-\frac{21}{2} & \frac{21}{2} \\
\frac{23}{2} & -\frac{23}{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{25}{2} & -\frac{25}{2} \\
-\frac{27}{2} & \frac{27}{2} \\
-\frac{29}{2} & \frac{29}{2} \\
\frac{31}{2} & -\frac{31}{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{33}{2} & -\frac{33}{2} \\
-\frac{35}{2} & \frac{35}{2} \\
-\frac{37}{2} & \frac{37}{2} \\
\frac{39}{2} & -\frac{39}{2}
\end{array}\right) .
$$

By adding $41 / 2$ to each entry of S, we obtain a 5 -tuple magic $(4,2)$-rectangle T as below.

$$
T:=\left(\begin{array}{ll}
21 & 20 \\
19 & 22 \\
18 & 23 \\
24 & 17
\end{array}\right)\left(\begin{array}{ll}
25 & 16 \\
15 & 26 \\
14 & 27 \\
28 & 13
\end{array}\right)\left(\begin{array}{cc}
29 & 12 \\
11 & 30 \\
10 & 31 \\
32 & 9
\end{array}\right)\left(\begin{array}{rr}
33 & 8 \\
7 & 34 \\
6 & 35 \\
36 & 5
\end{array}\right)\left(\begin{array}{rr}
37 & 4 \\
3 & 38 \\
2 & 39 \\
40 & 1
\end{array}\right) .
$$

Clearly, the sum over each row of any array is 41 and the sum over each column is 82 .

Proposition 4 If a balanced centrally n-tuple symmetric (p_{1}, q) -rectangle R and a centrally n-tuple symmetric $\left(p_{2}, q\right)$-rectangle S exist, then a centrally n-tuple symmetric $\left(p_{1}+p_{2}, q\right)$-rectangle T exists. If S is a balanced rectangle, then T can also be chosen to be balanced.

Proof. Suppose S has type x. By Lemma 1, we know that there exists a balanced centrally n-tuple symmetric $\left(p_{1}, q\right)$ rectangle R^{\prime} of type $x+n p_{2} q / 2$. Then by stacking R^{\prime} and S together, we obtain a rectangle T whose rows' and columns' sum is zero. Thus, T is a centrally n-tuple symmetric $\left(p_{1}+p_{2}, q\right)$-rectangle of type x. If S is balanced, then it is easy to see that T is also balanced.

Since n-tuple magic (p, q) -rectangles correspond to centrally n-tuple symmetric (p, q)-rectangles of type $-1 / 2$, we have the following corollary.

Corollary 1 Suppose an n-tuple magic $\left(p_{1}, q\right)$-rectangle and a balanced centrally n-tuple symmetric $\left(p_{2}, q\right)$-rectangle exist. Then an n-tuple magic $\left(p_{1}+p_{2}, q\right)$-rectangle exists.

Using the concept of a centrally n-tuple symmetric rectangle, we can prove the existence of even n-tuple magic rectangles. Our tools are the balanced centrally n-tuple symmetric $(2,4)$-rectangle $A:=\left(a_{i, j}^{1}\right)\left(a_{i, j}^{2}\right) \ldots\left(a_{i, j}^{n}\right)$ given by

$$
\left(a_{i, j}^{t}\right)=\left(\begin{array}{rrrr}
4 t-3 & -4 t+2 & -4 t+1 & 4 t \\
-4 t+3 & 4 t-2 & 4 t-1 & -4 t
\end{array}\right),
$$

and the n-tuple magic $(2,6)$-rectangle $B:=\left(b_{i, j}^{1}\right)\left(b_{i, j}^{2}\right) \ldots$ $\left(b_{i, j}^{n}\right)$ given by

$$
b_{1, j}^{t}= \begin{cases}1+12(n-t) & \text { if } j=1, \\ 11+12(n-t) & \text { if } j=2, \\ 3+12(n-t) & \text { if } j=3, \\ 9+12(t-1) & \text { if } j=4, \\ 8+12(t-1) & \text { if } j=5, \\ 7+12(t-1) & \text { if } j=6,\end{cases}
$$

and

$$
b_{2, j}^{t}=\left\{\begin{array}{lll}
12+12(t-1) & \text { if } \quad j=1, \\
2+12(t-1) & \text { if } \quad j=2, \\
10+12(t-1) & \text { if } \quad j=3, \\
4+12(n-t) & \text { if } \quad j=4, \\
5+12(n-t) & \text { if } \quad j=5, \\
6+12(n-t) & \text { if } j=6,
\end{array}\right.
$$

for all $t \in\{1,2, \ldots, n\}$.
Proposition 5 Let $q>2$ be an even integer. Then an n-tuple magic $(2, q)$-rectangle exists.

Proof. We induct on q. The existence of n-tuple rectangles A and B shows that we need only prove the proposition for $q \geq 8$. Assume we know that an n-tuple magic ($2, q^{\prime}$) rectangle exists for all even $q^{\prime}<q$. Then we know an n-tuple magic ($2, q-4$) -rectangle R exists. By Corollary 1 , we can add R and A together to form an n-tuple magic $(2, q)$ rectangle.

Proposition 6 Let p and q be even positive integers with $(p, q) \neq(2,2)$. Then an n-tuple magic (p, q)-rectangle exists.

Proof. By Proposition 5, we can assume that $q>2$. Using A and Proposition 4, induction shows that a balanced centrally n-tuple symmetric $(p, 4)$-rectangle R exists. Thus, an $n-$ tuple magic $(p, 4)$-rectangle exists and we can assume that $q>4$. Now assume that an n-tuple magic $\left(p, q^{\prime}\right)$-rectangle exists for all even $q^{\prime}<q$. We then know that an n-tuple magic ($p, q-4$) -rectangle S exists. By Corollary 1 , we can add R and S together to give an n-tuple magic (p, q) rectangle.

Example 2 The following arrays are examples of even n tuple magic rectangles.
A triple magic $(6,4)$-rectangle

$$
\left(\begin{array}{rrrr}
1 & 19 & 66 & 60 \\
50 & 68 & 17 & 11 \\
3 & 21 & 64 & 58 \\
70 & 52 & 9 & 15 \\
23 & 5 & 56 & 62 \\
72 & 54 & 7 & 13
\end{array}\right)\left(\begin{array}{llll}
25 & 43 & 42 & 36 \\
26 & 44 & 41 & 35 \\
27 & 45 & 40 & 34 \\
46 & 28 & 33 & 39 \\
47 & 29 & 32 & 38 \\
48 & 30 & 31 & 37
\end{array}\right)\left(\begin{array}{rrrr}
49 & 67 & 18 & 12 \\
2 & 20 & 65 & 59 \\
51 & 69 & 16 & 10 \\
22 & 4 & 57 & 63 \\
71 & 53 & 8 & 14 \\
24 & 6 & 55 & 61
\end{array}\right) .
$$

Then each row sum of any array is 146 and each column sum of any array is 219 .

A 4 -tuple magic $(4,4)$-rectangle

$$
\left(\begin{array}{rrrr}
7 & 12 & 49 & 62 \\
50 & 61 & 8 & 11 \\
16 & 3 & 58 & 53 \\
57 & 54 & 15 & 4
\end{array}\right)\left(\begin{array}{llll}
23 & 28 & 33 & 46 \\
34 & 45 & 24 & 27 \\
32 & 19 & 42 & 37 \\
41 & 38 & 31 & 20
\end{array}\right)\left(\begin{array}{llll}
39 & 44 & 17 & 30 \\
18 & 29 & 40 & 43 \\
48 & 35 & 26 & 21 \\
25 & 22 & 47 & 36
\end{array}\right)\left(\begin{array}{rrrr}
55 & 60 & 1 & 14 \\
2 & 13 & 56 & 59 \\
64 & 51 & 10 & 5 \\
9 & 6 & 63 & 52
\end{array}\right) .
$$

Then each row sum and each column sum of any array in a rectangle equals 130 .

III. The n-Fold Self-Union of Complete Bipartite Graphs

For any integer $n \geq 1$, the n-fold self-union of a graph G, denoted by $n G$, is the union of n disjoint copies of G. In this section we identify the sufficient condition for degree-magic labellings of the n-fold self-union of complete bipartite graphs $n K_{p, q}=K_{p, q}^{1} \cup K_{p, q}^{2} \cup \ldots \cup K_{p, q}^{n}$ to exist.

Theorem 3 For any integer $n \geq 1$ and even integers $p, q>1$, let $K_{p, q}^{t}$ be the $t^{\text {th }}$ copy of $K_{p, q}$ for all $t \in\{1,2, \ldots, n\}$. A mapping f from $E\left(n K_{p, q}\right)$ into positive integers given by

$$
f\left(u_{i}^{t} v_{j}^{t}\right)=r_{i, j}^{t} \quad \text { for every } \quad u_{i}^{t} v_{j}^{t} \in E\left(K_{p, q}^{t}\right),
$$

is a d-magic labelling of $n K_{p, q}$ if and only if $R:=\left(r_{i, j}^{1}\right)\left(r_{i, j}^{2}\right)$ $\ldots\left(r_{i, j}^{n}\right)$ is an n-tuple magic (p, q)-rectangle.

Proof. Let $U^{t}=\left\{u_{1}^{t}, u_{2}^{t}, \ldots, u_{p}^{t}\right\}$ and $V^{t}=\left\{v_{1}^{t}, v_{2}^{t}, \ldots, v_{q}^{t}\right\}$ be partite sets of $K_{p, q}^{t}$. Suppose that R is an n-tuple magic (p, q)-rectangle. Then f is a bijection from $E\left(n K_{p, q}\right)$ onto $\{1,2, \ldots, n p q\}$. For any $u_{i}^{t} \in U^{t}$, we have

$$
\begin{aligned}
f^{*}\left(u_{i}^{t}\right) & =\sum_{j=1}^{q} f\left(u_{i}^{t} v_{j}^{t}\right)=\sum_{j=1}^{q} r_{i, j}^{t} \\
& =\frac{q(n p q+1)}{2}=\frac{n p q+1}{2} \operatorname{deg}\left(u_{i}^{t}\right),
\end{aligned}
$$

and for any $v_{j}^{t} \in V^{t}$, we have

$$
\begin{aligned}
f^{*}\left(v_{j}^{t}\right) & =\sum_{i=1}^{p} f\left(u_{i}^{t} v_{j}^{t}\right)=\sum_{i=1}^{p} r_{i, j}^{t} \\
& =\frac{p(n p q+1)}{2}=\frac{n p q+1}{2} \operatorname{deg}\left(v_{j}^{t}\right) .
\end{aligned}
$$

i.e., f is a d-magic labelling of $n K_{p, q}$.

Now suppose that f is a d-magic labelling of $n K_{p, q}$. For all $1 \leq i \neq s \leq p$, we have

$$
\begin{align*}
\sum_{j=1}^{q} r_{i, j}^{t} & =\sum_{j=1}^{q} f\left(u_{i}^{t} v_{j}^{t}\right)=f^{*}\left(u_{i}^{t}\right) \tag{5}\\
& =f^{*}\left(u_{s}^{t}\right)=\sum_{j=1}^{q} f\left(u_{s}^{t} v_{j}^{t}\right)=\sum_{j=1}^{q} r_{s, j}^{t} .
\end{align*}
$$

For all $1 \leq j \neq z \leq q$, we have

$$
\begin{align*}
\sum_{i=1}^{p} r_{i, j}^{t} & =\sum_{i=1}^{p} f\left(u_{i}^{t} v_{j}^{t}\right)=f^{*}\left(v_{j}^{t}\right) \tag{6}\\
& =f^{*}\left(v_{z}^{t}\right)=\sum_{i=1}^{p} f\left(u_{i}^{t} v_{z}^{t}\right)=\sum_{i=1}^{p} r_{i, z}^{t}
\end{align*}
$$

By (5), we have

$$
\sum_{j=1}^{q} r_{i, j}^{t}=\sum_{j=1}^{q} r_{s, j}^{t}=\frac{q(n p q+1)}{2}
$$

By (6), we have

$$
\sum_{i=1}^{p} r_{i, j}^{t}=\sum_{i=1}^{p} r_{i, z}^{t}=\frac{p(n p q+1)}{2}
$$

Therefore, R is an n-tuple magic (p, q)-rectangle.
According to Theorem 3 and Proposition 6, we obtain the following result.
Proposition 7 Let p and q be even positive integers with $(p, q) \neq(2,2)$. Then $n K_{p, q}$ is a d-magic graph for all integers $n \geq 1$.

Example 3 We can construct a d-magic graph $3 K_{4,8}$ (see Figure 1) with the labels on edges $u_{i}^{t} v_{j}^{t}$ of $3 K_{4,8}$, where $1 \leq i \leq 4,1 \leq j \leq 8$ and $1 \leq t \leq 3$, in TABLE I.

Figure 1. A d-magic graph $3 K_{4,8}$.

TABLE I. THE LABELS ON EDGES OF D-MAGIC GRAPH $3 K_{4,8}$

Vertices	\boldsymbol{v}_{1}^{1}	\boldsymbol{v}_{2}^{1}	\boldsymbol{v}_{3}^{1}	\boldsymbol{v}_{4}^{1}	\boldsymbol{v}_{5}^{1}	\boldsymbol{v}_{6}^{1}	\boldsymbol{v}_{7}^{1}	\boldsymbol{v}_{8}^{1}
\boldsymbol{u}_{1}^{1}	1	8	93	92	9	16	85	84
\boldsymbol{u}_{2}^{1}	6	3	90	95	14	11	82	87
$\boldsymbol{u}_{3}^{\mathbf{1}}$	91	94	4	5	83	86	12	13
$\boldsymbol{u}_{4}^{\mathbf{1}}$	96	89	7	2	88	81	15	10

Vertices	\boldsymbol{v}_{1}^{2}	\boldsymbol{v}_{2}^{2}	\boldsymbol{v}_{3}^{2}	\boldsymbol{v}_{4}^{2}	\boldsymbol{v}_{5}^{2}	\boldsymbol{v}_{6}^{2}	\boldsymbol{v}_{7}^{2}	\boldsymbol{v}_{8}^{2}
\boldsymbol{u}_{1}^{2}	33	40	61	60	41	48	53	52
\boldsymbol{u}_{2}^{2}	38	35	58	63	46	43	50	55
\boldsymbol{u}_{3}^{2}	59	62	36	37	51	54	44	45
\boldsymbol{u}_{4}^{2}	64	57	39	34	56	49	47	42

Vertices	v_{1}^{3}	v_{2}^{3}	v_{3}^{3}	v_{4}^{3}	v_{5}^{3}	v_{6}^{3}	v_{7}^{3}	v_{8}^{3}
u_{1}^{3}	65	72	29	28	73	80	21	20
u_{2}^{3}	70	67	26	31	78	75	18	23
u_{3}^{3}	27	30	68	69	19	22	76	77
\boldsymbol{u}_{4}^{3}	32	25	71	66	24	17	79	74

Acknowledgments

This work was supported by Rajamangala University of Technology Lanna and Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi, Thailand.

References

[1] T. Harmuth, "Über magische Quadrate und ähniche Zahlenfiguren," Arch. Math. Phys., vol. 66, pp. 286-313, 1881.
[2] T. Harmuth, "Über magische Rechtecke mit ungeraden Seitenzahlen," Arch. Math. Phys., vol. 66, pp. 413-447, 1881.
[3] R. Sun, "Existence of magic rectangles," Nei Mongol Daxue Xuebao Ziran Kexue, vol. 21, no. 1, pp. 10-16, 1990.
[4] T. Bier and G. Rogers, "Balanced magic rectangles," European J. Combin., vol. 14, pp. 285-299, 1993.
[5] T. Bier and A. Kleinschmidt, "Centrally symmetric and magic rectangles," Discrete Math., vol. 176, pp. 29-42, 1997.
[6] T. Hagedorn, "Magic rectangles revisited," Discrete Math., vol. 207, pp. 65-72, 1999.
[7] T. Hagedorn, "On the existence of magic n-dimensional rectangles," Discrete Math., vol. 207, pp. 53-63, 1999.
[8] J. Sedláček, "Theory of graphs and its applications," Proc. Symp. Smolenice, Problem 27, Praha, pp. 163-164, 1963.
[9] B.M. Stewart, "Magic graphs," Canad. J. Math., Vol.18, pp. 1031-1059, 1966.
[10] J.A. Gallian, "A dynamic survey of graph labeling," Electron. J. Combin., \#DS6, vol.16, 2009.
[11] L’. Bezegová and J. Ivančo, "An extension of regular supermagic graphs," Discrete Math., vol. 310, pp. 3571-3578, 2010.

[^0]: Phaisatcha Inpoonjai ${ }^{1}$ and Thiradet Jiarasuksakun ${ }^{2}$
 Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi
 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand

