
�

�

Applied Physics Computing using Java Parallel Processing Framework in
clusters environment of parallel computing

Deepak Agnihotri * Mithilesh Atulkar Harendra Bikrol
Department of Computer Applications, Department of Computer Applications, Department of Computer Applications,
National Institute of Technology Raipur, National Institute of Technology Raipur, National Institute of Technology Raipur,
G.E. Road Raipur (C.G.) India-492010 G.E. Road Raipur (C.G.) India-492010 G.E. Road Raipur (C.G.) India-492010
email:agnihotrideepak@hotmail.com email:m_atulkar@sify.com email:harendrabikrol@gmail.com

Abstract
This paper gives a brief introduction of research in the

field of parallel and grid computing using java parallel

processing framework (JPPF). It is observed that applied

physics computations like Moment of Inertia, velocity,

viscosity of liquid, elasticity etc. requires lot of

calculations and also it should be precise to high degree

of accuracy. This application calculates the Moment of

Inertia of 11 types of bodies symmetrical in nature along

with given axis of rotation. These 11 tasks are running

parallel in JPPF grid in clusters environment of parallel

computing. This application promotes the solution of

such engineering problems with great accuracy and speed

as platform independent parallel applications. The

experimental results are obtained with the help of JPPF

GUI monitoring and administration tool.

Keywords

JPPF, node, drivers, MOI, axis of rotation, load balancing

algorithms.

Introduction

In this application there are 11 tasks for Moment of inertia

calculation of 11 symmetrical bodies are running parallel in

JPPF grid. JPPF is an open source Grid Computing

platform written in Java [8] that makes it easy to run

applications in parallel, and speed up their execution by

orders of magnitude. Write once, deploy once, and execute

everywhere! [1].The experimental results are obtained with

the help of JPPF GUI administration, monitoring and

management control tool .This tool helps to get average

execution time, average node execution time, average

queue size, average transport time etc. Before running this

application, we must have a JPPF driver and at least

one node running. This paper is organized in five sections:

First section, describes the application implemented

parallel in JPPF grid for Moment of Inertia Calculations of

11 symmetrical bodies. Second section, describes JPPF and

its various features, required software’s for running parallel

application using JPPF framework, and other technologies

in java for parallel and grid computing. Third section,

describes other related works in the field; in the Fourth

section, the authors have given the results of their

experiments and discussion about the results, and at last

section authors have given the conclusion of their paper.

1. Moment of Inertia of different bodies
symmetrical in nature

The following table 1-1 depicts the different types of
bodies’, formulas for Moment of Inertia calculations
with respect to given axis of rotations [6, 7].

S.No
.

Description figure

01 Thin cylindrical shell with open
ends,of radius r and mass
m,Moment(s) of Inertia I=mr2

Comments: This expression
assumes the shell thickness is
negligible. It is a special
case of the next object for
r1=r2. Also, a point mass
(m) at the end of a rod of
length r has this same
moment of inertia and the
value r is called the radius
of gyration.

02 Thick-walled cylindrical tube

with open ends, of inner radius

r1, outer radius r2, length h and

mass m

Iz=�m(r1
2 +r2

2)

Ix=Iy=�12 m[3(r2
2 + r1

2)+h2]

or when defining the normalized

thickness tn = t/r and letting r =

r2,

then

Comments: With a density of ρ

and the same geometry

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering
Editor In Chief Dr. R. K. Singh. Copyright © 2012 Universal Association of Computer and Electronics Engineers.
All rights reserved. ISBN: 978-981-07-1847-3
doi:10.3850/978-981-07-1847-3 P0550

106

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

�

�

03 Solid cylinder of radius r, height
h and mass m

Comments: This is a special
case of the previous object for
r1=0.
(Note: X-Y axis should be
swapped for a standard
right handed frame)

04 Thin, solid disk of radius r and
mass m

Comments: This is a special
case of the previous object for
h=0.

05 Thin circular hoop of radius r
and mass m

This is a special case of a
torus for b=0. (See below.), as
well as of a thick-walled
cylindrical tube with open ends,
with r1=r2 and h=0.

06 Ball (solid) of radius r and mass
m

Comments: A sphere can be
taken to be made up of a stack of
infinitesimal thin, solid discs,
where the radius
differs from 0 to r.

07 Sphere (hollow) of radius r and
mass m

Comments: Similar to the solid
sphere, only this time
considering a stack of
infinitesimal thin, circular hoops.

08 Ellipsoid (solid) of semiaxes a, b,
and c with axis of rotation a and
mass m

09 Right circular cone with radius r,
height h and mass m

10 Solid cuboid of height h, width
w, and depth d, and mass m

Comments: For a similarly
oriented cube with sides of
length s,

11 Thin rectangular plate of height h
and of width w and mass m

12 Thin rectangular plate of height h
and of width w and mass m (Axis
of rotation at the end of the plate)

13 Rod of length L and mass m

Comments: This expression
assumes that the rod is an
infinitely thin (but rigid) wire.
This is a special case of the
previous object for w = L and h =
0.

14 Rod of length L and mass m
(Axis of rotation at the end of the
rod)

Comments: This expression
assumes that the rod is an
infinitely thin (but rigid) wire.
This is also a special case of the
thin rectangular plate with axis of
rotation at the end of the plate: h
= L and w =0.

Table 1-1

Now the following table 1-2 shows 11 tasks,

implemented parallel in JPPF grid for Moment of

Inertia calculations.

107

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

�

�

***Task 1::Parallel Calculation of Moment of Inertia
of a Thin cylindrical shell with open ends, of
radius=14.38 and mass=7.74is
I=1600.5112560000002***

***Task 2::[1]Parallel Calculation of The Moment of
inertia of a Thick-walled cylindrical tube with open
ends,of inner radius=14.38,outer
radius=12.38,length=12.21 and
mass=7.74,with respect to x-axis and y-axis is
Ix=Iy=792.8536725***
[2] Parallel Calculation of The Moment of inertia of a
Thick-walled cylindrical tube with open ends, of
inner radius=14.38,outer radius=12.38 and
mass=7.74,with respect to z-axis is
Iz=1393.3888560000003***

***Task 3::[1]Parallel Calculation of The Moment of
inertia of a Solid cylinder of
radius=14.38,height=12.21 and
mass=7.74,with respect to x-axis and y-axis is
Ix=Iy=688.6055475000002***
[2]The Moment of inertia of a Solid cylinder of
radius=14.38,height=12.21 and mass=7.74,with respect
to z axis is Iz= 800.2556280000001 ***

***Task 4::[1]Parallel Calculation of The Moment of
inertia of a Thin solid disk of radius=14.38 and
mass=7.74
, with respect to x and y axis is
Ix=Iy=400.12781400000006 ***
[2]The Moment of inertia of a Thin solid disk of
radius=14.38 and mass=7.74, with respect to z
axis is Iz= =800.2556280000001 ***

***Task 5::[1]Parallel Calculation of The Moment of
inertia of a Thin circular hoop with radius=14.38 and
mass=7.74,with resect to x and y axis is Ix=Iy=
=800.2556280000001***
[2]The Moment of inertia of a Thin circular hoop with
radius=14.38 ,
and mass=7.74,with resect to z axis is
Iz=1600.5112560000002 ***

***Task 6::Parallel Calculation of The Moment of
inertia of a Ball (solid) with radius=14.38and
mass=7.74 I= =640.2045024000001 ***

***Task 7::Parallel Calculation of] The Moment of
inertia of an Ellipsoid (solid) of semi axis
a=4.23,b=4.38,
and c=5.23,with axis of rotation a=4.23 and
mass=7.74,I=72.0397404***

***Task 8::[1] Parallel Calculation of The Moment of
inertia of a Right circular cone with
radius=4.38,height=5.23 and mass=7.74with resect to x
and y axis is Ix=Iy=149.299956 ***
[2] The Moment of inertia of a Right circular cone with
radius=4.38,height=5.23 and mass=7.74, with resect to
z axis is Iz=44.5461768***

***Task 9::[1]Parallel Calculation of the Moment of
inertia of a Solid cuboid of height=5.23,width=12.21,
and depth=8.45, and mass=7.74 with resect to Height
Ih=142.21385700000002 ***
[2] Parallel Calculation of the Moment of inertia of a
Solid cuboid of height=5.23,width=12.21, and
depth=8.45, and mass=7.74, the with resect to Width
Iw==63.697233 ***
[3] Parallel Calculation of the Moment of inertia of a
Solid cuboid of height=5.23,width=12.21, and
depth=8.45, and mass=7.74 The Moment of inertia
with resect to Depth Id=113.80186500000003***

***Task 10::[1]Parallel Calculation of The Moment of
Inertia of a Thin rectangular plate of height h=5.23 and
of width w=12.21 and
mass=7.74,when axis of rotation is at the end of the
plate Ie=166.72972650000003***
[2]The Moment of Inertia of a Thin rectangular plate of
height h= and of width w=12.21and
mass=7.74,when axis of rotation is at the center of the
plate Ic=113.80186500000003 ***

***Task 11::[1]Parallel Calculation of The Moment of
inertia of a Rod of length=5.23 and mass=7.74,when
Axis of rotation is at the center of the rod
Ic=17.642620500000003,
[2]The Moment of inertia of a Rod of length=5.23 and
mass=7.74,when Axis of rotation is at the end of the
rod Ie=70.57048200000001 ***

Table 1-2

2. JPPF Features

JPPF stands for Java Parallel Processing Framework. JPPF has

many outstanding features such as :- a JPPF grid can be up and

running in minutes; highly scalable, distributed framework for the

execution of Java tasks; leverages JCA 1.5 to integrate with

leading J2EE application servers; easy programming model that

abstracts the complexity of distributed and parallel processing;

graphical and programmatic tools for fine-grained monitoring and

administration; reliability through redundancy, recovery and

failover capabilities; a set of fully documented sample

applications, demonstrating the use of JPPF on real-life problems;

very flexible and non-constraining open-source licensing [1, 2,

3,4,5,and 9].

2.1 Required Software’s

We need to download and install the following JPPF components:
JPPF application template: this is the JPPF-2.0-application-
template.zip file
JPPF driver: this is the JPPF-2.0-driver.zip file
JPPF node: this is the JPPF-2.0-node.zip file
JPPF administration console: this is the JPPF-2.0-admin-ui.zip
file.

108

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

�

�

These files are all available from the JPPF installer and/or from

the JPPF download page ([1]). In addition to this, Java 1.5 or later

and Apache Ant 1.7.0 or later should already be installed on your

machine. We have created a new folder called "JPPF", in which

all these components are unzipped [1]. Thus, we should have the

following folder structure:

 » JPPF
 » JPPF-2.0-admin-ui
 » JPPF-2.0-application-template
 » JPPF-2.0-driver
 » JPPF-2.0-node
The JPPF-2.0-admin-ui folder is used for executing JPPF

framework’s GUI monitoring and administration tool. We have

placed our all java files for this application in the JPPF-2.0-

application-template folder. The JPPF-2.0-application-template

folder is organized with the following directory structure:

root directory: contains the scripts to build and run the

application
src: this is where the sources of the application are located
classes: the location where the Java compiler will place the

built sources
 config: contains the JPPF and logging configuration files

lib: contains the required libraries to build and run the

application
The JPPF-2.0-driver and JPPF-2.0-node folders are required for

executing driver and nodes these two folders containing all the

necessary files for running successfully the driver and nodes

should be installed in each client machine which you want to use

for your application. Before running this application, we must

have a JPPF server and at least one node running. We have used

Apache Ant 1.7.0 for running this application.

2.2 Other Technologies in Java for Parallel
and Grid Computing
There are various other technologies in Java for Parallel and Grid

Computing, some of them are Gridgain, HPJava, JPVM, Java

Aglets using Mobile agents etc. JPPF might be the main

competitor for the GridGain for grid computing applications using

java. There are various features of JPPF frameworks such as TCP

port multiplexer, J2ee connector, JPPF GigaSpaces etc which

makes it better than other java technologies for Parallel and Grid

Computing applications. The one important feature form the JPPF

framework is TCP port multiplexer, very useful to connect various

nodes in case of proxy servers and firewalls.

3. Other Related Works

There are various other applications which are running with JPPF

framework some of them are come with JPPF sample applications

like Matrix Multiplication, DNA/Protein Sequence alignment etc.,

which can be downloaded freely from the JPPF website[1]. Many

researchers are using this framework for executing their research

applications parallel in JPPF grid. Mostly Scientific and

Mathematical applications like Numerical Integration, Solution of

Linear algebraic equations, Numerical physics applications etc

uses JPPF framework for parallel task execution in JPPF grid,

which requires so much calculation with great precision.

4. Results and Discussions
JPPF now has 4 different algorithms auto tuned, manual, and

proportional and rl algorithms to compute the distribution of tasks

to the nodes, each with its own configuration parameters. The

distribution of the tasks to the nodes is performed by the JPPF

driver. This work is actually the main factor of the observed

performance of the framework. It consists essentially in

determining how many tasks will go to each node for execution,

out of a set of tasks sent by the client application. Each set of tasks

sent to a node is called a "bundle” and the role of the load

balancing (or task scheduling) algorithm is to optimize the

performance by adjusting the number of task sent to each node

[1]. The application is executed for 2, 4, and 8 nodes using auto

tuned and proportional load balancing algorithms. The results tell

that they depend on number of nodes and load balancing

algorithm.

�

Fig 4-1: output of the application using eclipse IDE and ant builder

The figure Fig 4-1 shows the output of the application using

eclipse IDE and ant builder. Table 4-1 and Table 4-2 show the

proportional and auto tuned load balancing algorithm data for 2, 4,

and 8 nodes. Graph 4-1 and Graph 4-2 are the graphs for showing

109

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

�

�

the relationships among data’s of Table 4-1 and Table 4-2

respectively.

Table -4-1: proportional load balancing algorithm data

Graph -4-1: proportional load balancing algorithm data and graph

Table -4-2: auto tuned load balancing algorithm data

Graph -4-2: auto tuned load balancing algorithm

If this application is executed using sequential algorithm

that is without using JPPF grid on clusters then it takes

about 14-16 seconds ,whether if load balancing algorithm is

used in cluster environment then it takes 3-4 seconds. We

can say using JPPF grid on cluster environment this parallel

application’s speedup and efficiency is high over sequential

implementation of the application. The figure Fig4-2 and

Fig 4-3 shows the server stats, bar chart respectively using

JPPF administration and monitoring tool. The figure Fig 4-

3 shows the output for sequential implementation i.e.

without distributing the task on JPPF grid.

Fig 4-2: Server stats using JPPF administration and monitoring tool.

Fig 4-3: bar chart using JPPF administration and monitoring tool.

Number
of Nodes

Average
Execution
Time(ms)

Average
Node

Execution
Time(ms)

Average
Transport
Time(ms)

Average
Queue
Time
(ms)

2 84.40 78.00 6.40 80.80

4 92.30 82.80 9.50 40.40

 8 112.73 102.20 10.53 26.93

Number
of Nodes

Average
Execution
Time(ms)

Average
Node

Execution
Time(ms)

Average
Transport
Time(ms)

Average
Queue
Time
(ms)

2 92.93 85.57 7.37 20.30

4 104.64 96.44 8.20 18.68

8 112.00 102.55 9.45 20.20

110

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

�

�

��������	
��
�
����	���������	�������
		������������	������	����������������������

��	��
�

��� �	�	�	!�
	�	��������	����"��
�
����	��������

�	�������
		������������	������	�����������������	��

����
�

���� �����!���	��	�����
��
�
����	��������

�	�������
		������������	������	�����������������	��

������	
�

���� #�$��!�����������%&������	����	������
�
����	��������

�	�������
		������������	������	�����������������	��

�����
�

���
�

����� #�$�!�''''''''''(�����	�����������������)��	������*�	��������$�����������	��'''''''�

����� #�$�!�+�

����� #�$�!��,	�)��	��������	�����������,����"�����������,	������,���	��	���-���������.%/�01�

����� #�$�!����������.2�2/���*.�.%344�5%%&53444444&6�

����� #�$�!�+�

����� #�$�!��,	�)��	��������	�����������,���7����	���"�������������	����,���	��	���-���

����� #�$�!�����	��������.%/�01-��

����� #�$�!�����	��������.%&�01-��

����� #�$�!��	���,.%&�&%������

����� #�$�!������.2�2/-���,��	�	�������7���������"7��������*�.*"..28&�15032&5-��

����� #�$�!��,	�)��	��������	�����������,���7����	���"�������������	����,���	��	���-���

����� #�$�!����	��������.%/�01-�

����� #�$�!�����	��������.%&�01�������

����� #�$�!������.2�2/-���,��	�	������97��������*9.�.%080�01115344444406�

����� #�$�!�+�

����� #�$�!��,	�)��	��������	�����������������"����	�����������.%/�01-�

����� #�$�!��,	��,�.%&�&%������

����� #�$�!������.2�2/-���,��	�	�������7���������"7��������*�.*"..311�3455/2544444&-��

����� #�$�!��,	�)��	��������	�����������������"����	�����������.%/�01-�

����� #�$�!��,	��,�.%&�&%������

����� #�$�!������.2�2/-���,��	�	������9���������*9.�.144�&553&1444444%6�

����� #�$�!�+�

����� #�$�!��,	�)��	��������	�����������,�����������������������.%/�01� ������

����� #�$�!�����.2�2/�

����� #�$�!�-����,��	�	������������"����������

����� #�$�!��*�.*".�./44�%&21%/44444443-��

����� #�$�!��,	�)��	��������	�����������,�����������������������.%/�01� ������

����� #�$�!�����.2�2/�

����� #�$�!�-����,��	�	������9���������*9.�.144�&553&1444444%6�

����� #�$�!�+�

����� #�$�!��,	�)��	��������	�����������,������������,�������,�������.%/�01�

����� #�$�!����������.2�2/-���,��	�	������������"���������*�.*".�.144�&553&1444444%-��

����� #�$�!��,	�)��	��������	�����������,������������,�������,�������.%/�01�-��

����� #�$�!����������.2�2/-���,��	�	������9���������*9.�.%344�5%%&53444444&6�

����� #�$�!�+�

����� #�$�!��,	�)��	��������	���������������:�����;����,�������.%/�01�����

����� #�$�!������.2�2/�*.�.3/4�&4/54&/44444%6�

����� #�$�!�+�

����� #�$�!��,	�)��	��������	�����������<���������:�����;�����	����	���./�&0-�

����� #�$�!���./�01-�

����� #�$�!�������.5�&0-���,�������������������./�&0���������.2�2/*.�.2&�4082/4/6�

����� #�$�!�+�

����� #�$�!� ��,	�)��	������ ��	����������=��,��������������	����,�������./�01-,	��,�.5�&0�����

����.2�2/���,��	�	������������"��������*�.*"..%/8�&88853-��

����� #�$�!��,	�)��	������ ��	����������=��,�� ��������� ���	����,� ������./�01-,	��,�.5�&0�����

����.2�2/���,��	�	������9��������*9..//�5/3%2316�

����� #�$�!�+�

����� #�$�!�����������������,	��,�.5�&0-����,.%&�&%-������	��,.1�/5-���������.2�2/��

����� #�$�!��,	�)��	��������	��������,��	�	������>	��,��*,..%/&�&%01524444444&-��

����� #�$�!�����������������,	��,�.5�&0-����,.%&�&%-������	��,.1�/5-���������.2�2/��

����� #�$�!��,	�)��	��������	��������,��	�	������?���,�*�..30�382&00-��

����� #�$�!� ������ ������� ��� ,	��,�.5�&0-����,.%&�&%-� ���� �	��,.1�/5-� ���� ����.2�2/� �,	�

)��	��������	��������,��	�	������
	��,�*�..%%0�14%135444444406�

����� #�$�!�+�

����� #�$�!��,	�)��	������ *�	�����������,��� �	��������������	����,	��,��,.5�&0������������,�

�.%&�&%����

����� #�$�!� � ����.2�2/-�,	�� ����� ��� ��������� ��� ��� �,	� 	��� ��� �,	� ����	�

*	..%33�2&82&354444440-��

����� #�$�!� �,	�)��	��� ��� *�	����� ��� �� �,��� �	���������� ����	� ��� ,	��,�� ,.� ���� ��� ����,�

�.%&�&%�����

����� #�$�!� ����.2�2/-�,	�� ����� ��� ��������� ��� ��� �,	� �	��	�� ��� �,	� ����	�

*�..%%0�14%135444444406�

����� #�$�!�+�

����� #�$�!��,	�)��	��������	����������=�������	���,.5�&0������

����� #�$�!� � ����.2�2/-�,	�� @���� ��� ��������� ��� ��� �,	� �	��	�� ��� �,	� ����

*�..%2�3/&3&4544444440-��

����� #�$�!���,	�)��	��������	����������=�������	���,.5�&0������

����� #�$�!������.2�2/-�,	��@�����������������������,	�	�������,	����*	..24�524/1&4444444%6�

�A*B
��A��<��CAB�

���������	
�%/��	������

Fig 4-4: output for sequential implementation i.e. without distributing the task on JPPF grid

5. Conclusions

JPPF framework is cost effective, platform independent and easy

to implement applications parallel. It is easy to implement for

those having prior knowledge of java. All the concepts and

utilities of java along with JPPF features can be

implemented using this framework. This Framework can be

best utilized for those mathematical applications which

require lot of calculations. The performance issue varies as

nodes increases; it depends upon various factors such as

network overhead, distribution of the tasks to the nodes

made by the driver, and nodes which use pool of threads to

perform the execution of the multiple tasks etc.. Speedup

and efficiency of parallel application is great using JPPF

grid on cluster environment.

If this application is executed using sequential algorithm

that is without using JPPF grid on clusters then it takes

about 14-16 seconds ,whether if load balancing algorithm is

used in cluster environment then it takes 3-4 seconds. We

can say using JPPF grid on cluster environment this parallel

application’s speedup and efficiency is high over sequential

implementation of the application.

This application promotes with great accuracy and speed as

platform independent parallel applications: the solution of

engineering problems like Moment of Inertia, velocity,

viscosity of liquid, elasticity etc. requires lot of calculations

and also it should be precise to high degree of accuracy.

References

[1] All about JPPF at http://www.jppf.org/

[2] For JPPF features website is

http://linux.softpedia.com/get/Utilities/JPPF-47576.shtml

[3] For JPPF features website is

http://www.theserverside.com/news/thread.tss?thread_id=47941

[4] JPPF features at http://grid-comp.blogspot.com/2008/12/jppf-

and-gridgain-two-java.html

[5] JPPF features at

http://linux.softpedia.com/get/Programming/Libraries/Java-2-

Standard-Edition-Runtime-Environment-6-16344.shtml

[6] Moment of Inertia at

http://en.wikipedia.org/wiki/Moment_of_inertia

[7] Moment of Inertia at

http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html��

 [8] The Complete Reference Java Seventh edition,Herbert Schildt

[9] Java Parallel Programming Framework: JPPF by Murray Foote

& John HetheringtonBOPPOLY Taranga, NZ at

http://naccq08.unitec.ac.nz/proceedings/papers/351.pdf

�

111

