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Solving nonlinear Volterra integro-differential 

equations of fractional order by generalized triangular 

operational matrix 
 [ Mahnaz Asgari ] 

 
Abstract— In this paper, a computational method based on 

triangular functions for solving a class of nonlinear Volterra 

integro-differential equations of fractional order is presented. 

Generalized operational matrix of triangular functions is 

constructed and used to transform the equation to a system of 

algebraic equations. Some numerical examples are provided to 

illustrate the accuracy and efficiency of the method.  

Keywords— Generalized operational matrix, Fractional 

integro-differential equation, Triangular functions. 

I  Introduction    
  The fractional derivative has been occurring in many 

physical problems such as, phenomena in electromagnetics, 

acoustics, the modeling of earthquake, electrochemistry, and 

material science are described by differential or integro-

differential equations of fractional order[1-4]. The reason is a 

realistic modeling of physical phenomenon, having 

dependence not only on the time instant, but also on the 

previous time history, can be successfully achieved by using 

fractional calculus. Deb et al. in [5,6], proposed orthogonal 

triangular function (TF) sets derived from the block pulse 

function (BPF) set. They calculated the operational matrix for 

integration in TF domain and they established with illustration 

that the TF domain technique is more accurate than the BPF 

domain technique as far as integration is concerned. 

We used generalized operational matrix of TFs [7] for 

reducing the nonlinear fractional integro-differential equation 

to a set of algebraic equations. 

Our topic is fractional integro differential equation(FIDE) as 

following  
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II. Basic definitions  

Some basic definitions and properties of the fractional 

calculus theory and TF are given in this section.  

Definition 2.1 The Riemann-Liouville fractional integral 

operator of order 0  is defined as  
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Definition 2.2 The Caputo definition of fractional 

derivative operator is given by  
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Two basic properties are  
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 Two m-sets of triangular functions are defined over the 

interval )[0,T  as[5]  
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where, 10,...,= mi , and 
m

T
h = . 
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The set of TFs may be written as a vector )1(tT  and )2(tT  

of dimension ,m  
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The expansion of a function )(tf  over )[0,T  with respect to 

TFs , 10,...,= mi  may be taken as  

 ),(=)2(2)1(1=)(ˆ)( tTFtTFtTFtftf TTT 

 (2) 

 where, )(=1 ihfF i  and )1)((=2 hifF i   for 

10...= mi . The vectors 21, FF  are called the 1D-TF 

coefficient vectors and m2 -vector F  is defined as  
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Also, the positive integer powers of a function )(tf  may be 

approximated by 1D-TFs as  
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 where nF
 is 2m-vector whose elements are nth power of the 

vector F. It is easily established that[8]  
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 is a 2m-vector with elements equal to the 

diagonal entries of matrix B̂  and )(=
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mm 22   diagonal matrix. 

Integration of any function 
)(tf

 can be approximated as  
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where, P  is operational matrix of integration [6].  

 

III. Generalized operational 
matrix of TF 

  In this section, generalized operational matrix of TF for 

fractional calculus is derived. For )(1 tT i , applying definition 

of the convolution, we get  
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 we use Laplace transform to find this integral  
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 Taking inverse Laplace transform of Eq.(6) yields  
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 In a similar manner, the fractional integration of )(2 tT i  is  
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 Now, we expand )(1 tTI i


 with respect to TFs as follow  
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 Finally, for 1,0,...,=  1,0,...,=  mjmi  we can write  
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where, 
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Proceeding in a similar manner as for T1, we find that  
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using Eq.(9) and Eq.(10) fractional integration of )(tT  can be 

computed  

dssTsttTI
t

)()(
)(

1
=)( 1

0


 




 

=)2(

)1(

)(
)(

1
= 1

0
dssT

sT

st
t


























 

  





































)2(4)1(3

)2(2)1(1

)2(

)1(

tTPtTP

tTPtTP

tTI

tTI











 

,)2(

)1(

43

21

=
































tT

tT

PP

PP





 
 so,  

                       
),(=)( tTPtTI 



 (11) 

 where P , generalized operational matrix of T(t), is  
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The fractional integration of any function )(tf  can be 

approximated as  
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 IV  Solving nonlinear FIDE 
 

 In this section, by using the results of the previous sections, 

an effective direct method for solving nonlinear FIDE is 

presented. Using the definitions of the fractional derivatives 

and integrals, it is suitable to rewrite Eq.(1) in the following 

form  
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 where 2m-vectors 0Y , ,Y , F  , nYA,  and mm 22   matrix 

K  are TF coefficients. Also elements of nY  are n th power of 

the vector Y. 

From Eqs.(18) and (19), Integral part in Eq.(13) can be 

approximated as  
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nYdiagY  and AB ˆ,ˆ  are defined in (7). By 

substituting Eqs.(14),(17),(20) and (21) in Eq.(13), we get  
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  Eq.(23) is a nonlinear system of algebraic equations. 

Components of unknown vector Y  can be obtained by solving 

this system using an iterative method.   The presented method 

is applied on some examples. These examples are selected 

from different references, so the numerical results can be 

compared with the other methods.  

 

 IV. Numerical Examples 
  

Example 1   The fractional integro-differential equation is 

considered as follows   
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  with these supplementary conditions 0.=(0)=(0) yy  The 

exact solution is  
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 Table I shows that the numerical solutions derived by 

presented method are in a very good accuracy with the exact 

solutions. 

 

Example 2  Consider the fractional integro-differential 

equation[9]   
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  subject to initial conditions 1=(0)0,=(0) yy  . 

The value of 2=  is the only case for which we know the 

exact solution and our approximate solution is in good 

agreement with the exact values. The exact solution for 

2=  is )(=)( tsinhty .  

 

 

Table I 

The absolute error between the exact solution and the 

approximate solution 

 

m    
1Example

   
2Example

  

8=m    
3102.9   

4102.3   

16=m    
4109.7   

5103.1    

32=m    
4102.3   

5103.5   
 

 

 

 

VI Conclusion 
 
   In this paper, we present a computational method based on 

TFs for solving a class of nonlinear Volterra integrro-

differential equations of fractional order. Generalized 

operational matrix of TF is derived and used to reduce FIDE 

to a system of algebraic equations. The advantage of this 

method is low cost of setting up the equations without 

applying any projection method. 
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