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Abstract—Designing the emergency medical services 

systems (EMS) are important in human societies, principally in 

urban areas where incidents occur at a high rate due to high 

population density. As such, the EMS managers face the task of 

searching for ways to improve the performance of the systems 

to respond to the requirements of patients taking into 

consideration the budget imposed by the state. This paper 

proposes an extension of the Dynamic Redeployment Coverage 

Location (DRCL) model to locate ambulances that are offering 

two types of services, i.e., Advance Life Support (ALS) and  

Basic Life Support (BLS) for two types of incoming calls 

(critical and non-critical). Apart from providing coverage for 

the non-critical calls, the BLS acts as a “backup” for the ALS 

in providing coverage to critical calls. The objective is to 

minimize the number of ambulances while meeting a 

predetermined level of coverage required. 

Keywords—coverage location problem, emergency medical 

system EMS, hypercube model, queuing theory  

I.  Introduction 
The main target of emergency medical service systems 

(EMS) is to reduce mortality rate, disability, and suffering in 
persons [1, 2]. As such, EMS providers and managers are 
often faced with the difficult mission of locating a limited 
number of ambulances in a manner that will result in the 
best service to a constituent population [3, 4]. One of the 
main challenges for the EMS providers and managers is to 
adequately increase service coverage [5]. The dynamic 
redeployment of the ambulances is one strategy that will 
likely help increase coverage when some of the ambulances 
are busy. The EMS often receives many types of demand for 
the service and it provides multiple levels of care in 
emergency situations. Emergency medical calls are typically 
classified into two categories: critical and non-critical. The 
critical consists of calls that are likely to be "life-
threatening", while the non-critical are calls which are 
considered emergent but "non-life threatening". 
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The EMS ambulance services can also be classified into 
two categories: advanced life support (ALS) and basic life 
support (BLS). ALS ambulances are managed by 
paramedics and are equipped to effectively handle critical 
demands such as cardiac resuscitation and airway 
management. BLS ambulances are managed by emergency 
medical technician (EMT) and are equipped for non-critical 
problems. 

This paper proposes an extension of the Dynamic 

Redeployment Coverage Location (DRCL) model, to locate 

ambulances that are offering two types of services, i.e., 

Advance Life Support (ALS) and  Basic Life Support (BLS) 

for two types of incoming calls (critical and non-critical). 

Apart from providing coverage for the non-critical calls, the 

BLS acts as a “backup” for the ALS in providing coverage 

to critical calls. The objective is to minimize the number of 

ambulances while meeting a predetermined level of 

coverage required.  

This paper is organized as the follows. A literature 
review of the location models used in the EMS is discussed 
in section II. Section III presents the mathematical program 
of the model in which the two types of server (ALS & BLS) 
and the two types of demand calls (critical & non-critical) 
are incorporated. Conclusions and suggestions for future 
work are discussed in section IV. 

II.  Literature review 
During the last two decades, many types of emergency 

location system models have evolved, in an attempt to 
formulate the emergency response systems in the best 
possible way. The emergency location system models are 
generally grouped into two broad categories: deterministic 
static and probabilistic static. The first model in 
deterministic static models is the Set Covering Location 
Problem (SCLP) introduced by Toregas, Swain, ReVelle 
and Bergman [6]. Its objective is to minimize the total cost 
of the EMS ambulances with the given distance or time 
threshold. SCLP ignores many aspects of the real problems. 
It makes no difference between the nodes on the basis of the 
volume of demand. So that, each node must be covered 
without regard to the cost. A few years later, Church and 
ReVelle [7] proposed the Maximum Coverage Location 
Problem (MCLP) model to counter some of the 
shortcomings of the SCLP. Its objective is to maximize the 
demand coverage given a limited number of the EMS 
ambulances.  

All deterministic static models do not take into account 
the possibility that the server is busy when a call comes in; 
this is the main drawback for these models. Therefore, 
researchers used probabilistic static models as they admit the 
possibility that the server may be busy when a call comes in.  
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The earlier models in probabilistic static models are the 
Maximum Expected Coverage Location Problem 
(MEXCLP) introduced by Daskin [8] and the Maximum 
Availability Location Problem (MALP) introduced by 
ReVelle and Hogan [9, 10]. Its objective maximizes the 
expected and available coverage, respectively. A common 
assumption used in these models is the server independence 
and system-wide server busy probability. There are two 
versions of MALP: MALP I and MALP II. The original 
model MALP I supposed that the EMS ambulances had the 
same busy probability fraction while the MALP II supposed 
a local busy probability fraction that is associated to the 
demand node. Galvão, Chiyoshi and Morabito [11] gave a 
unified view of Daskin’s MEXCLP and ReVelle and 
Hogan’s MALP I. They developed an extension of MALP I 
by dropping the simplifying assumptions of the original 
model (independence among servers and system-wide server 
busy probability). This is done by embedding the Larson’s 
hypercube model [12]. 

To relax the assumption of the independence of busy 
probability of the various servers in the MALP I, Marianov 
and ReVelle [13] developed the Queuing Maximum 
Availability Location Problem (Q-MALP). To derive the 
busy probability of the servers at each demand node, the Q-
MALP modeled the arrivals and services at each node as an 
M/G/s/s queuing system. Later, Noraida [14] extended the 
Q-MALP model by formulating the Multi-server Queuing 
Maximum Availability Location Problem (MQ-MALP). Its 
objective maximizes the number of demand nodes that are 
covered by two types of services, i.e., the Advance Life 
Support (ALS) and Basic Life Support (BLS) with reliability 
level. In addition, this model takes into account the 
stochastic nature of the travel times.  

All previously mentioned models (Deterministic and 
Probabilistic Static) are useful in the strategic level but lack 
the flexibility in the operational level because they do not 
take relocation into account. Demand patterns in many areas 
are not static but changing during different times of the day. 
Thus, the decision makers need to relocate some facilities in 
order not to leave any areas without coverage. The two 
previous papers on relocation in the EMS literature are by 
Repede and Bernardo [15] and by Gendreau, Laporte and 
Semet [16]. Repede, et al. [15], formulated the Time 
Maximum Expected Coverage Location Problem 
(TIMEXCLP) model, which is an extension of MEXCLP. 
Its objective is to maximize the expected coverage for 
different time intervals. Gendreau, et al. [16], on the other 
hand, formulated the Dynamic Double Standard Model 
(DDSMt) that looked at actual demand changes.  

Later, Rajagopalan [17] formulated three alternative 
models which are: the Dynamic Set Covering Problem 
(DSCP) to minimize the number of EMS ambulances at 
different time intervals, the Minimum Redeployment 
Location Problem (MRLP) to minimize the number of EMS 
vehicles and their redeployments and the Minimum Service 
Time with Constant Coverage (MSTCC) to minimize the 
response time required to reach each call. Rajagopalan, 
Saydam & Xiao [18] formulated the Dynamic Available 
Coverage Location (DACL) model with the objective of 
determining the minimum number of the EMS vehicles and 
their locations. Recently, Saydam, et al. [5] formulated the 
Dynamic Redeployment Coverage Location model (DRCL), 
which is an extension of the DACL model by 

simultaneously minimizing both the number of EMS vehicle 
and redeployments. This model assumed there is only one 
type of vehicle and the nearest available vehicle dispatch 
policy. 

 In this paper we propose an extension of the DRCL 
model to locate ambulances offering two types of services, 
i.e., the ALS and  BLS that cater to two different types of 
incoming calls (critical and non-critical), hence forth known 
as Multi-server DRCL (MS-DRCL). The objective is to 
minimize the number of ambulances while meeting a 
predetermined level of coverage required. 

 

III. The MS-DRCL Model 
In this section MS-DRCL model is formulated to 

determine the minimum number of ambulances with two 
types of medical units and catering to two types of calls in a 
geographical area. The following list summarizes the 
symbols used.  
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Essentially, the approximation for the hypercube model 
given by Larson [12, 19] and its extension by Jarvis [20] 
assumes servers operate independently but then correct this 
obvious “error” with the correction factor. Hence, the 
correction factor of ALS ambulances, ( , , )A A A

t tQ m j and 

correction factor of  BLS ambulances, ( , , )B B B

t tQ m j  are 

given by the following equations:
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With these definitions, the objective of minimizing the 
number of ALS ambulances while meeting a predetermined 
level of coverage requirement can be formulated as  
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and the objective of minimizing the number of BLS 
ambulances while meeting a predetermined level of 
coverage requirement can be formulated as   
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Thus, the objective function becomes 
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Thus, the MR-DRCL can be formulated as 
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The objective (3) minimizes the total number of 
ambulances (ALS and BLS) while meeting a predetermined 
level of coverage requirement. The constraint (4) ensures the 
nodes which are covered by ALS or BLS ambulances are 

within the required 
t  reliability. The constraint (5) ensures 

the nodes which are covered by BLS are within the 

required
t  reliability. The constraint (6) ensures the total 

coverage of critical calls that are covered by the ALS or BLS 
ambulances and non-critical calls that are covered by the 
BLS units cannot be less than the minimum percentage 

coverage at time ,t  )( tc . The constraints (7) and (8) limit the 

number of ALS and BLS ambulances at time interval ,t , 

respectively. Finally, the constraint (9) forces the variables to 
be binary (i.e. 0, 1). 

 

IV.    CONCLUSIONS 
In this paper, we highlight the most important literature 

related to our work that has been used during the past two 
decades in the EMS, together with the advantages and 
limitations of their work. To fill the gap in the literature, we 
propose the MS-DRCL to minimize the number of 
ambulances while meeting a predetermined level of 
coverage requirement. Our model extends the DRCL model 
with two types of servers, namely the ALS and BLS 
ambulances, which are available for responding to two types 
of emergency medical calls, namely the critical and non-
critical calls. Future work will be to solve our model via the 
meta-heuristic methods. 
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