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Abstract—This paper describes the development of the direct 

strength method (DSM) for concrete-filled tubular (CFT) sections. 

A formula for strength interactions of CFT members under 

combined compression and flexure is proposed and is compared 

with test results. The comparison confirmed that the formula for 

axial and flexural strength and that for strength interactions can 

conservatively predict the resistance of CFT columns to the axial 

load and combined compression and bending.  
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I. Introduction                           
Since concrete-filled tubular (CFT) sections have 

advantages such as high strength, excellent ductility, and large 
energy dissipation capacity, they are used as structural 
members for high-rise buildings and long-span bridges. Since 
the steel skin confines the outward deformation of the filled-in 
concrete and the concrete resists the inward deformation of the 
steel skin, both steel and concrete enhance the strength of CFT 
sections. However, the thin steel skin of CFT sections is 
susceptible to elastic or inelastic local buckling under 
compression and/or bending before overall buckling or 
material yielding. However, there is substantial post-buckling 
strength in the local buckling mode, and this should be 
accounted for in estimating the design strength of the steel 
skin. An increase in the compressive strength of concrete from 
tri-axial confinement by the locally buckled steel skin should 
also be considered in estimating the ultimate strength of CFT 
sections.  

The present paper proposes a set of squash load equations 
for circular and rectangular CFT columns to account for the 
local buckling of the steel skin based on previous compression 
test results for CFT sections in the literatures. The predicted 
squash load of CFT columns is compared with test results and  
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those predicted by existing specifications. In addition, the 
paper also proposes a simple formula for flexural strength for 
the direct strength method (DSM) based on the sectional 
slenderness of the steel skin of CFT sections.. All strength 
curves use the elastic local buckling stress of the steel skin, 
which can be computed by a rigorous analysis program or 
theoretical equations, and a limiting strength formula based on 
various test results. The paper proposes and compares strength 
interaction equations with test results under eccentric loading. 
The comparison confirmed that the proposed formula for axial 
and flexural strength and interaction equations can 
conservatively predict the strength of CFT columns. . 

II. Resistance of CFT columns to 
axial compression  

 A squash load equation for circular and rectangular CFT 
section stub columns for the DSM has been proposed based on 
various test results in Kwon et al. [1]. The equation proposed 
adopted a single formula for both circular and rectangular CFT 
section columns. However, since the axial resistance of 
rectangular sections based on the elastic local buckling stress 
is very different from that of circular sections and thus 
produces too conservative estimates for rectangular CFT 
sections, it needs to be expressed in a different formula for the 
better estimation of axial strength.   

A formula for the axial resistance of rectangular CFT stub 
columns can be given by             

cccssdsno AfCAFP  2φφ                             (1) 

where sdF = steel design stress; sA =steel area; cf =concrete 

compressive strength; cA = concrete area;
 srA =steel 

reinforcement bar area; yrF = yield stress of steel bar; and sφ
 

and cφ
 
are material factors for steel and concrete and taken as 

0.95 and 0.65, respectively. The format of the resistance 
formula is quite similar to that in EC4 [3]. The portion of the 
reinforcement steel bar for axial resistance is omitted in Eq. 
(1) for simplicity. 

The design strength formula for welded steel sections [2] 
can be conservatively adopted for the steel skin of rectangular 
CFT columns. The design strength curves for a rectangular 
steel skin to account for local buckling are given by      

ysd FF                    for 816.0λ                            (2a) 
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The elastic local buckling stress crlF  can be computed by 

rigorous computer programs or a theoretical local buckling 
stress equation. The theoretical elastic local buckling stress 
formula for a simply supported plate given in Eq. (3) can be 
used for square sections and rectangular sections composed of 
equal-width subpanels [3]:   
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where t= thickness and b= width of the plate or subpanel. 
Since the width and height of a rectangular section are not 
equal, Eq. (3) cannot be directly used. The equivalent width in 
Eq. (4) can be adopted to calculate an elastic local buckling 
stress using Eq. (3).  
 

t

b

t

b

t

beq 21

4

3

4

1
                                          (4) 

III. Flexural strength of CFT 
sections  

The stress distribution of rectangular CFT sections in 
flexure for compact, noncompact, and slender (called slender 
after here because there is no limit between noncompact and 
slender section in DSM) is quite similar to fully plastic theory 
and is given in Fig. 1. The compressive stress of the steel skin 
should be determined according to Eqs. (2a) and (2b) using the 
elastic local buckling stress under pure bending. As shown in 

Fig. 1, for compact sections( 816.0λ  ), the compressive 

stress   in Eq. (2a) of the steel skin reaches the yield stress of 
the material, and the tensile stress also reaches it. The concrete 
stress is assumed as cube strength with the material factor 

applied. For slender sections ( 5.2λ816.0  ), the 

compressive stress of the steel skin does not reach the nominal 
yield stress of the material according to Eq. (2b), whereas the 
tensile stress reaches it. However, because the steel section in 
compression is assumed to sustain its post-buckling strength 
until its final failure, the stress block can be assumed as 
similar to the stress block for a compact section. The concrete 
strength factor  can be computed by Eqs. (5a) and (5b).  

0.12 C                  for  816.0λ         (5a) 

2

2 )816.0λ(65.00.1 C     for  λ816.0        (5b) 

In the calculation of 2C  and  sdF for the flexural 

resistance of CFT sections, the elastic local buckling stress 

crlF  should be determined under pure bending instead of 

under uniform compression, which can be computed by the 
FEM or FSM program. However, Eq. (3) can be used 
conservatively for the simple calculation of design 
compressive strength and concrete strength factor .  

   

Fig. 1. Stress distribution of rectangular CFT sections 

IV. Resistance to combined 
compression and uniaxial bending  

A.  Strength interaction formula  
In general, an accurate strength interaction curve obtained 

by the strain compatibility method should be used to check the 
resistance of CFT columns under combined axial force and 
bending. However, because this method requires stress-strain 
relationships for concrete and steel and repetitive calculations, 
it is inconvenient, and therefore a simplified interaction curve 
has been adopted to determine the resistance of columns to 
combined compression and bending under EC4 [4] and AISC 
specifications [5]. Fig. 8 shows the simplified strength 
interaction curves, which are quite similar to those in EC4  and 

AISC specifications, except for the replacement of sdF  for 

yF  in the compression zone. For compact sections, strength 

interaction curves defined in the DSM, EC4, and AISC 
specifications are quite simple because they are based on the 
theory of the fully plastic moment. In addition, strength 
interaction equations can be defined in a similar manner for 
slender sections. Fig. 2 shows strength interaction curves for 
compact and slender sections. The design compressive stress 

sdF  at point A is computed using the elastic local buckling 

stress based on the uniform compressive load and at B based 
on pure bending, as mentioned earlier. Therefore, the 

compressive stress sdF  at points C and D can be linearly 

interpolated between those values at points A and B according 

to the axial force. The stress sdF  at point C can be obtained 

by  

A
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                 (6) 

where AsdF ,  and BsdF ,  are  steel design stresses at points A 

and B,  respectively.  
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Similarly, the concrete strength factor 2C at point A is 

computed using the elastic local buckling stress under uniform 
compression, and that at point B is obtained under pure 
bending. Those values at points C and D can be computed 
similarly through a linear interpolation between those values at 
points A and B according to the ratio of the compression force. 

However, if interpolated values are used for sdF  and 2C , 

then the safety check procedure becomes much more difficult. 

For the simplified strength computation, sdF  and 2C  at 

points C and D are assumed as values at point B.  

The flexural moment BM at point B is a pure bending 

moment, and the moment CM  at point C is the same as 

BM at point B. Therefore, the axial force CP  can be 

computed by the sum of the resulting force at point B and that 

at point C. The axial force CP  is the combined steel and 

concrete force given by   

ssdsyscccC AFFAfCP )φφ(φ 2              (7) 

Because sdF  is equal to yF  for compact sections, the axial 

force is the plastic resistance of concrete alone, and Eq. (7) 
can be expressed as            

 cccC AfCP 2φ                                     (8) 

 

Fig. 2.Compression-uniaxial bending strength interaction curve 

 

Because the neutral axis is located on the centroid of the CFT 

section at point D, the axial force DP is a half of CP , as shown 

in Fig. 2:   
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The distance from the centroid to the neutral axis can be 
obtained by comparing the stress distribution at points B and 
C:   
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Once nh  is calculated, the moments at points B, C and D can 

be calculated easily.  

Flexural strength at point D is the maximum moment and can 
be calculated by  
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The flexural strength at point B, which is pure bending, can be 
calculated by  
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where  

2
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2
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Although an additional point can be added between points 
A and C for a more accurate estimation of resistance, a 
simplified strength interaction curve can generally be 
completed by connecting points A, C, B, and D directly and 
the linear interpolation between them. In reality, however, the 
moment resistance at point D is slightly higher than that at 
point C for slender sections. Therefore, the resistance at point 
D can be neglected, and an interaction curve can be obtained 
by removing D and connecting point B to point C directly in 
the interaction curve, as shown in Fig. 2.  

 

B. Comparison with test results 
The strength equation in previous sections should be 

modified to account for column slenderness relative to test 
results. Moment strength is left as it is, whereas axial strength 
in the strength interaction curve is reduced by using the 
slenderness reduction factor in AISC specifications [4] to 
account for column slenderness. The axial force at points A, 
C, and D in Figs. 3 and 4 indicates the reduced strength of the 
squash load of stub columns by multiplication with the 
slenderness reduction factor, which is a ratio of column 
strength to the squash load:  
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n

P

P
                                                    (13) 

where nP  is column strength computed by Eqs. I2-2 and I2-3 

in AISC specifications [4].    

The reduced strength interaction curve is compared with the 
test results in [6-7] in Figs. 3 and 4 for verification purposes. 
In addition, strength interaction curves in AISC specifications 
and EC4 are included in Figs. 3 and 4 for comparison 
purposes. As shown in Figs. 3 and 4, the reduced strength 
interaction curve shows conservative resistance for test 
columns in combined axial compression and bending in 
comparison with test results for CFT section columns in [6, 7]. 
The strength prediction of columns under combined 
compression and bending is more conservative than that under 
the axial load or pure bending alone. Because the test columns 
in [6] are stub columns, the reduction in strength due to 
column slenderness is negligible. The AISC strength 
interaction curve is much more conservative than the DSM 
curve for all sections of 20 in b/t and similar for the sections of 
30 in b/t. However, the AISC strength interaction curve is 
slightly less conservative than the DSM curve for the sections 
of 40 in b/t. The test yield stress, ultimate stress, and 
compressive concrete strength of test specimens in [6] are 
750.0 MPa, 817 MPa, and 28~32 MPa, respectively, and the 
width-to-thickness ratios are 20, 30, and 40.  In AISC 
specifications, sections with a width-to-thickness ratio of 30 
and 40 are classified as non-compact sections, that is, whose 
slenderness exceeds 0.816. As shown in Fig. 4, the strength 
interaction curve conservatively predicts the strength of CFT 
columns under compression and bending in comparison with 
test results in [7]. The EC4, AISC and DSM strength 
interaction curves are quite similar for all sections with a 
width-to-thickness ratio of 35.3 that are compact sections. 
However, for the sections with a width-to-thickness ratio of 
52.2, DSM strength interaction curves are much less 
conservative, because AISC specifications adopts the 
interaction curve for steel members. Sections whose width-to-
thickness ratios equal to 52.2 are noncompact sections in 
AISC specifications, whereas the others are compact sections. 
The yield stresses of Varma’s test [7] are 269 MPa, 471 MPa, 
whereas the concrete strength is 110 MPa in all cases. 
Regardless of width-to-thickness ratio, all test sections failed, 
mainly because of the bending moment.  

As shown in Figs. 3 and 4, the proposed strength interaction 
curve shows conservative strength estimates under the axial 
load, the bending moment, and combined axial compression 
and uniaxial bending in comparison to various test results. 
Regardless of the width-to-thickness ratio of the steel skin, the 
strength estimates and interaction equations for CFT columns 
are verified to be reasonably conservative. Although the steel 

design stress sdF  and the concrete strength 

factor 2C computed based on the local buckling stress of the 

steel skin under the pure bending condition is employed for 
the case of combined axial compression and bending, the 
resistance according to the reduced strength interaction curve 
shows reasonably conservative values. The results in Figs. 3 

and 4 verify that the stress assumptions for axial compression, 
pure bending, and combined axial compression and bending 
for both compact and slender sections are quite reasonable for 
design purposes.  

 

 

 

 
Fig. 3. Compression of strength interaction curve and test results [6] 
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Fig. 4. Compression of strength interaction curve and test results [4] 
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