
 

1 

Proc. of the Second Intl. Conf. on Advances in Civil, Structural and Construction Engineering - CSCE 2015 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-042-2 doi: 10.15224/ 978-1-63248-042-2-01 

 

The Effects of Viscous Bulk Compressibility for 

Noncylindrical Helices 
Nihal Eratlı, Hakan Argeso, Mehmet H. Omurtag 

 
Abstract—In this study, the effects of viscous bulk 

compressibility on the dynamic viscoelastic response of 

noncylindrical helicoidal rods are examined. For this aim, a 

viscoelastic model is proposed that takes standard type of 

distortional behavior and Kelvin type of bulk compressibility. 

Based on Timoshenko beam theory, two-nodded curvilinear 

elements are in Laplace space. The viscoelastic material 

properties are implemented into the formulation through the use 

of the correspondence principle (elastic-viscoelastic analogy). The 

analysis is carried out in the Laplace space and the results are 

transformed back to time space numerically by using the 

modified Durbin's algorithm. As sample problems, the 

noncylindrical helicoidal rods fixed from both ends which are 

subjected to dynamic step type of distributed loading are 

considered. Three different helicoidal rods that have different 

helical geometries are analyzed and their dynamic responses are 

compared. The effects of viscous bulk compressibility are also 

investigated.    

Keywords—viscoelasticity, noncylindrical helicoidal rod, 

mixed finite element method, Laplace space 

I.  Introduction 
Generally, helicoidal rods appear to be one of the critical 

elements within engineering structures due to their 
functionality. The proper design of these elements must be 
fulfilled after performing a reliable analysis. This fact 
becomes more important if these elements are subjected to 
dynamic loading. 

It is a common practice to analyze the dynamic response of 
engineering structures by assuming that the material is linearly 
elastic. However, there may be some cases that, the viscous 
effects arising from the internal friction within these structures 
could not be neglected.  

The theory of viscoelasticity is well established and many 
textbooks about this topic are available in literature such as  
[1,2]. The viscoelastic behaviors of straight and circular bars 
were examined extensively [3-9], however, few studies exist 
in literature that investigates the viscoelastic behavior of 
helicoidal bars [10-13]. Within these studies the works that 
takes helicoidal bars having noncircular cross section into 
account are even more rare.  
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When the material exhibits linear viscoelastic behavior, the 
correspondence principle can be used for the analysis [14]. 
This principle states that the field equations of the viscoelastic 
problem in the Laplace space may be obtained from those for 
the elastic problem by replacing the elastic constants with 
complex moduli according to the chosen viscoelastic models.  

Within the scope of this study, the dynamic behavior of 
linear viscoelastic noncylindrical helical rods having square 
cross section is investigated. For this aim, a mixed finite 
element formulation based on Timoshenko beam theory is 
used, and, element matrices for two nodded curvilinear space 
rod element are obtained in Laplace space. The new 
viscoelastic material properties are inserted into the finite 
element algorithm verified by [12]. It is assumed that, the 
material exhibits standard type of distortional behavior and 
Kelvin type of bulk compressibility. The complex moduli 
associated with these material models are implemented in the 
formulation via the correspondence principle. The solution of 
the system matrices of finite element method are carried out in 
Laplace space. Then, the results obtained in Laplace space are 
transformed back to time space with the use of Modified 
Durbin’s algorithm [15-17]. Helicoidal rods that have different 
helical geometries are considered. These rods are assumed to 
be fixed from both ends and subjected to dynamic step type of 
vertical distributed loading. Analyses are performed for 
investigating the influence of the helix geometry and the 
effects of viscous bulk compressibility on the dynamic 
response of helicoidal rods. 

II. Formulation 

A. The Helix Geometry 
The geometry of a helix can be defined in the Cartesian 

coordinate system in terms of the helix parameters as: 

( )cosx R   , ( )siny R    and ( )z p   , where 

( ) ( ) tanp R   . Here,  is the pitch angle. ( )p   is a 

function of the horizontal angle   and defines the step for 

unit angle of the helix. For the conical helix geometry (Type 

I), the centerline radius ( )R   is expressed as 
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and for the barrel (Type II) and hyperboloidal (Type III)  helix 

geometries, ( )R   is  
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where n  is the number of active turns. Here, as examples, 1R  

and 2R  are shown for noncylindrical helical geometries in 

Figure 1. 
  

 

Figure 1. Conical, barrel and hyperboloidal helix geometries 

 

B. The Field Equations and Functional 
in the Laplace Space 

 The field equations of the elastic cylindrical/non-cylindrical 
helix based on the Timoshenko beam assumptions were 
presented by [18] regarding Frenet coordinate system. Based 
on this premise, the Laplace transformed field equations can 
be listed as follows:  
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where the Laplace transformed variables are denoted by the 
over bars, comma as a subscript under the variable designates 
the differentiation with respect to s and z  is the Laplace 

transformation parameter. In (3), 
 

( , , )t n bu u uu  is the 

displacement vector, ( , , )t n b  Ω  is the rotation vector, 

( , , )t n bT T TT
 
is the force vector, ( , , )t n bM M MM  is the 

moment vector in the Laplace space,   is the density of 

homogeneous material, A  is the area of the cross section, 

( , , )t n bI I II  is the moment of inertia of the cross section, q
 

and m
 
are the distributed external force and moment vectors 

in the Laplace space, C  and C  are the compliance matrices 

in the Laplace space, namely, 
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 (4) 

where /A A k   and  k   is the shear correction factor. (3) is 

written in the operator form  Q Ly f , if the operator is 

potential, the equality * *d ( , ), d ( , ),Q y y y Q y y y  must be 

satisfied [19]. d ( , )Q y y% and *d ( , )Q y y  are Gâteaux 

derivatives of the operator in directions of y% and *
y . After 

proving the operator to be potential, the functional of the 
structural problem is obtained in the Laplace space as follows 
[12]: 
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The terms with hats in (5) define the known values on the 
boundary. The subscripts   and  , represent the geometric 

and dynamic boundary conditions, respectively. 

C. Mixed Finite Element Formulation 
A two nodded curved element is used to discretize the 

beam domain. Linear shape functions ( ) /i j       and 

( ) /j i       are employed in the mixed finite element 

formulation where ( )j i     . The curvatures are 

satisfied exactly at the nodal points and linearly interpolated 
through the element [12]. Each node has 12 degrees of 
freedom namely: 

 { , , , , , , , , , , , }T

t n b t n b t n b t n bu u u T T T M M M   X  



Figure 2. The helicoidal rod with both ends fixed 

III. Numerical Examples 
Helicoidal rods having different helical geometries that are 

analyzed in this study are shown in Figures 3, 4 and 5 (Type I, 
Type II and Type III). These rods are assumed to be fixed 
from both ends and subjected to dynamic step type of vertical 

distributed loading that have an intensity of 10N/moq   (See 

Figure 2). The helix geometries are defined by making use of 
(1) and (2). The helix geometry has 0.5n   number of active 
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turns, the height of the rod is 3mH   and the minimum 

radius of helix to maximum radius of helix ratios 

min max/ 0.5R R   where max 2mR  . The square cross-

sectional area of the rod is 2400cmA= . The material density 

is 31000 kg/m  . 

  

 (a) Three dimensional view (b) Top view 

Figure 3 Helicoidal rod: Type I 
 

  

 (a) Three dimensional view (b) Top view 

Figure 4 Helicoidal rod: Type II 
 

  

 (a) Three dimensional view (b) Top view 

Figure 5 Helicoidal rod: Type III 
 

As stated, we assume that the material exhibits standard 
type of distortional behavior and Kelvin type of bulk 
compressibility. The form of complex shear modulus can be 
expressed as  

 ( 1) 1
1/

G

G

r

z
G G

z




 
   

 
   ; / 1G

gG G    (7) 

where, G

r , G  and gG  are the retardation time, the 

equilibrium value and the instantaneous value of relaxation 
function associated with shear modulus. In the analyses, we 

select 5 27 10 N/mG   , 0.01sG

r   and 3G  . The form of 

complex bulk modulus is given by 

 *1 K

rK K z
 

   
 (8) 

where * K

r  and K  are the retardation time and the equilibrium 

value of creep function associated with bulk modulus. In order 
to the investigate the effects of viscous bulk compressibility 

on the dynamic behavior, we select 6 21.5167 10 N/mK    

and perform the analyses for * 0.0s; 0.1s; 0.5s;1.0sK

r  . We 

note that, when * 0.0sK

r    the material exhibits elastic bulk 

compressibility.   

Helicoidal rods are discretized by using 40 elements and 
the solutions of system matrices of the finite element method 
are carried out in Laplace space. The results are transformed 
back to time space by making use of modified Durbin’s 
algorithm [12].  

Time variations of the vertical displacement zu  evaluated 

at the mid points (see point C  in Figure 2) between 

0 50st   for three types of helicoidal rods are shown in 

Figures 6a, 6b and 6c, respectively. Each figure contains four 
different results that correspond to different values of 
retardation times of bulk modulus. From each figure, one may 

observe that, as the values of * K

r  increase (the viscous effects 

associated with the bulk compressibility increase), the 

magnitude of zu  decreases and also zu   damps quicker. Plots 

for the time variations of the moment yM  evaluated at the 

fixed end (see point A  in Figure 2) of the rods are depicted in 

Figures 7a, 7b and 7c. The time variations of yM  also show a 

similar behavior as those of zu .   

Figures 8a and 8b, respectively, compare the time 

variations of zu  and yM  determined for three different 

helicoidal rods having different helical geometries. The 
retardation time associated with bulk modulus is taken as 

* 0.1sK

r  . Observation of the responses from these figures 

reveals that, the amplitudes of zu  and yM  obtained for Type 

II are significantly higher than those corresponding to Type I 
and Type III. On the other hand, Type II has the lower 
vibration frequency for both responses when compared with 

the other. We see that, the amplitudes of zu  and yM  obtained 

for Type III are lower than those corresponding to Type I and 

Type II. Especially, the difference in zu  is significant. We 

also note that, the responses determined for Type III have the 
highest vibration frequencies.   

IV. Conclusions 
Using a viscoelastic material model which takes standard 

type of distortional behavior and Kelvin type of bulk 
compressibility into account, linear viscoelastic noncylindrical 
helicoidal rods are analyzed by using mixed finite element 
method. The formulation is accomplished in Laplace space 
and the viscoelastic material properties are accounted through 
the use of correspondence principle. The analyses are carried 
out in Laplace space and then the results are transformed back 
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to time space via Modified Durbin’s algorithm. Three 
helicoidal rods that have different types of helical geometries 
are analyzed. The influence of the helix geometry and the 
effects of viscous bulk compressibility on the dynamic 
response for these helicoidal rods are discussed extensively. 

 

 

(a) Type I 

 

(b) Type II 

 
(c) Type III 

Figure 6.  Comparison of the time variations of
z

u for the helicoidal rods 

having different grades of viscous bulk compressibility  

 

 

 
(a) Type I 

 
(b) Type II 

 
(c) Type III 

Figure 7. Comparison of the time variations of
y

M  for the helicoidal rods 

having different grades of viscous bulk compressibility  
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Figure 8.   Comparison of the time variations of  
z

u  and
y

M  for three 

different types of helicoidal rods  
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