

154

Proc. of the Second Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-044-6 doi: 10.15224/ 978-1-63248-044-6-125

Netlogo, Agent-based tool for Modeling and

Simulation of Routing Problem in Ad-hoc Networks
Akram Kout Said Labed Salim Chikhi

Abstract— Mobile Ad hoc network (MANET) is an

autonomous system of mobile hosts (nodes) connected by wireless

link forming a temporary network without the aid of any

established infrastructure or centralized administration. Typical

applications of MANETs are: emergency and rescue operations,

disaster relief efforts, military operations and exploration mission

where cellular infrastructure is unavailable. The main problem of

mobile ad hoc networks is to design routing protocols allowing

for communication between the hosts. The dynamic nature of ad

hoc networks makes this problem especially challenging.

Communication in MANET is multi-hop due to limited

transmission range; this decentralized operation relies on the

cooperative participations of all nodes. MANETs are considered

as complex system characterized by high dynamic topology, local

interactions, auto-organization and emergence. Modeling and

simulation are very important in the design and development of

distributed interacting system because of their particular

stochastic nature. This article seeks to use agent-based tools for

modeling ad hoc network. We focus on Netlogo, an important

tool in the modeling and simulation domain of complex system.

We have successfully implemented distributed Dijkstra’s shortest

path algorithm to solve the routing problem. Obtained Results

show the quick convergence of Dijkstra’s Algorithm to shortest

paths relating a source node with all accessible destinations.

Keywords— Mobile Ad-hoc Networks, Routing, Modeling and

simulation, Distributed Dijkstra's Algorithm.

I. Introduction
 Mobile ad hoc network (MANET) is a collection of
wireless mobile nodes dynamically forming a temporary
network without the use of any centralized administration. The
challenge in MANETs is to find a path between
communicating nodes. Such type of networks is characterized
by the absence of centralized infrastructure, dynamic
topology, the constraint of energy, the heterogeneity of nodes,
multi-hop communication and limited bandwidth.

Akram Kout

MISC Laboratory
Constantine University 2, Algeria

Said Labed

MISC Laboratory

Constantine University 2, Algeria

Salim Chikhi
MISC Laboratory

Constantine University 2, Algeria

Routing in MANET is extremely challenging. In order to
efficiently transmit data to destinations, the applicable routing
algorithms must be implemented in mobile ad-hoc networks.
Thus we can increase the efficiency of the routing by
satisfying the Quality of Service (QoS) parameters by
developing routing algorithms for MANETs.
 A complex system consists of a number of subunits that

can be described in terms of relatively simple rules: the

interaction between these units led to the emergence of

sophisticated features which cannot be explained in terms of

individual properties. In the case of a wireless ad-hoc network,

the properties of the individual units (nodes) are relatively

simple, but a collection of these nodes do not necessarily

realize an efficient functional network. It is therefore desirable

to induce self-organization using protocols that control the

overall behavior of the system through the knowledge of the

information flow between its parts. Existing algorithms in

conventional networks are based on this principle, but most

algorithms rely on the knowledge of the global information

(eg. routing tables that describe all possible routes between

nodes), by contrast, algorithms that take advantage of self-

organization in ad hoc networks are based on paradigms that

tend to reduce the dependence of the global information: they

get the desired effect, based on local information or

probabilistic methods. As paradigms evolve centralized

control to a purely self-organized system, the degree of

determinism in the algorithms decreases, and at the same time

the evolution of the network increases. An ad-hoc network can

be considered as a complex system consisting of a number of

mobile agents coupled via radio links, so many collective

properties associated with such systems are presented or can

be induced. Moreover, the properties of other types of

complex networks such as social networks, or certain

biological networks can be designed in ad-hoc networks. Since

MANET could be viewed as a distributed, decentralized and

self-organized system, we use Netlogo simulator to

demonstrate the global behavior emergence in such networks.

To this end, we implemented a distributed version of Dijkstra's

shortest path algorithm.
The rest of the paper is organized as follows: Section II

reviews related works. In Section III, we discuss the Routing
in Mobile Ad-hoc Networks while Section IV outlines
network models using graph theory. Next, in Section V, we
present the distributed Dijkstra’s shortest path algorithm and
its modifications for finding stable paths. Section VI shows the
simulation, outcomes and discusses the obtained results.
Finally, Section VII concludes the paper with some future
directions.

155

Proc. of the Second Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-044-6 doi: 10.15224/ 978-1-63248-044-6-125

II. Related Works
The first idea of using multi-agent programming language

for modelling and simulating mobile ad hoc networks is

inspired by work presented in [2]. [2] pinpoints shortcomings

of traditional network simulators, when used for simulating

complex computer networks such as pervasive computing,

large scale peer-to-peer networks involving considerable

environment. Author proposes the use of NetLogo for

modelling and simulating complex computer networks,

describes NetLogo programming language and its highlights

features. In order to demonstrate effectiveness of NetLogo, the

author has created four elementary models of complex

computer networks. However, it is well known that creating

computer models of mobile ad hoc network with all details

about network-state remains impossible and generally

undesirable. Models of real world are therefore created with

certain level of granularity. Paper [3] demonstrated that poorly

selected level of granularity, which neglects some important

details, has very serious impact on the accuracy of simulation

results. Therefore, authors in [3] recommend independently

analysing, designing and optimising needed level of mobile ad

hoc network model granularity according to intention of

created model and according to results which model should

provide.

Main critical factor affecting the results of mobile ad hoc

network simulation is mobility model of nodes. Mobility

model of nodes, as defined in [4], “is a set of rules used to

generate trajectories for mobile entities.” This paper

demonstrates critical impact of chosen model of mobility on

results obtained from simulation of mobile ad hoc network.

Badly chosen mobility model of nodes leads to incorrect

simulation results. Standard mobility models are stochastic.

However, papers [5][6] have shown the harmful impact of

stochastic mobility models to overall simulation analysed and

demonstrated.

Currently, the new trend is to use more realistic mobility

models as done in [7].

Recently, authors in [8] have demonstrated the

appropriateness of NetLogo for modelling and simulating high

level aspects of mobile ad hoc networks. Specifically, they

used NetLogo for simulating and evaluating security criteria of

various public key infrastructure approaches in mobile ad hoc

network.

III. Routing in Mobile Ad-hoc
Networks

 Routing in ad hoc networks is the most important problem.

Because of nodes mobility, locating a destination at a given

moment becomes complicated. So, a routing protocol is used

in order to discover paths between communicating nodes (see

Fig. 1). Routing protocols for MANETs can be separated into

three main categories, namely: proactive, reactive and hybrid

protocols that combine proactive and reactive operation.

Fig 1. Mobile Ad-hoc Network

The routing strategy is fundamental for mobile ad hoc

networks. It must be done in a rational manner, i.e. with

minimal control and good conservation of bandwidth.

Furthermore, the changes in topology must be taken into

account. For this, a hundred routing protocols have been

proposed

 Proactive protocols: control packets are constantly

broadcast on the network to maintain the state of the link

between each pair of nodes. At each node a table is

constructed where each entry indicates the next hop to a

certain destination. The most important routing protocols

of this class are: Destination Sequence Distance Vector

(DSDV) and Optimized Link State Routing (OLSR). The

main limit of this category is its weakness against path

conservation.

 Reactive routing protocols, (or on demand), that create and

maintain the paths as needed. When a node needs a route, a

global discovery procedure of paths is launched to obtain a

valid path to the destination. The most important routing

protocols of this class are: Ad hoc On demand Distance

Vector (AODV) and Dynamic Source Routing (DSR). The

main limits of this category are: Delay caused by a search

before transmission, Path expiration after a certain time.

 Hybrid protocols combine the two approaches. They use a

proactive protocol, to learn the close neighborhood (on two

or three hops), and they have the paths in the immediate

neighborhood. Beyond the predefined area, the hybrid

protocol uses the techniques of reactive protocols to look

for routes between non-neighboring nodes (more than two

or three hops). The most important routing protocol of this

class is Zone Routing Protocol (ZRP).

IV. Modeling of Mobile Ad-hoc
Network

A MANET can be modeled as a graph G (V, E) where V is
the set of vertices and E is the set of edges. Two vertices
(nodes) of a graph are connected only if there is a
communication link between them. Once a MANET is
represented as a graph, the next question that arises is whether
a graph property has implications for MANET. Table 1.
represents the different network models :

156

Proc. of the Second Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-044-6 doi: 10.15224/ 978-1-63248-044-6-125

Model Description Example

Unit Disk

Graph
(UDG)

 In the graphs model

each node is identified

by a single disk of

radius r = 1.

 there is an edge

between two nodes u
and v if and only if the

distance between u and

v is less than 1.

 it does not model the

weights on the edges

and nodes.

Undirected
Graph

(UG)

 This Graph is described

as: G = (V, E) where V
is the set of vertices or

nodes and E is the set of
non-oriented edges.

 Lack Of modeling

weights on the edges
and nodes.

Directed
Graph

(DG)

 The same description
for the undirected graph

except that E in this
model is the set of

directed edges.

Directed
Weighted

Graph

(DWG)

 The Same description
for the undirected graph

but this model models

the weight of nodes and
edges.

Table 1. Network Models

UDG is a particular instance of a graph in which each node
is identified by a unit circle of radius r = 1, and there is an
edge between two nodes u and v if and only if the distance
between u and v is at most 1 [10, 11]. The model is shown in
Fig 2.a, the transmission range of each node is drawn as a
dashed circle. The edges that connect the nodes, are drawn as
straight lines. The neighbors of node u is v, w, y and z, which
are shown in the simplified graph in Fig 2.b. Because of that
the most adequate network model for Mobile ad-hoc networks
is UDG.

-a- -b-
Fig 2. « Unit Disk Graph » Model

V. Dijkstra Shortest Path
Algorithm

 In this section we describe the centralized approach of

Disjktra's shortest path, after that we present the distributed

Dijkstra’s shortest path algorithm and its modifications for

finding stable paths;

A. Centralized Approach of Dijkstra's
Algorithm :

 This algorithm is often used to solve the routing problem

in telecommunication networks. This algorithm determines the

shortest path between the source and all other nodes in the

graph .However, the algorithm can be used to calculate the

shortest path between a source node and a destination node.

Dijkstra algorithm need to have the link costs of all links.

 Notations:

 S: Source node.

 visited node: unreturned node.

 d: distance of a node from the source, this distance is

estimated minimum.

 V: set of all vertices.

 V-C: the nodes that are in V and are not in C.

 Principle:

 Construction of a set C of visited vertices, for which

the shortest paths have already been calculated.

 Then by choosing a vertex u not in C, the shortest

path estimated d(u) is minimum.

 Add u to C and say that u is visited. At this point, all

u arcs V-C are open, i.e., they are reviewed and the

shortest path to the respective estimated, it is updated

for all endpoints.

 Note that d is initialized to ∞ for all vertices except

vertex u where d = 0 (in terms of routing protocols, d

must be initialized with the current time t).

Algorithm: Dijkstra (Centralized Approach)

1 dist[s] ←0

2 for all v ∈ V–{s}

3 do dist[v] ←∞

4 S←∅

5 Q←V

6 while Q ≠∅

7 do u ← mindistance(Q,dist)

8 S←S∪{u}

9 for all v ∈ neighbors[u]

10 do if dist[v] > dist[u] + w(u, v)

11 then d[v] ←d[u] + w(u, v)

12 return dist

157

Proc. of the Second Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-044-6 doi: 10.15224/ 978-1-63248-044-6-125

B. Decentralized Approach of Dijkstra's
Algorithm :
Actually similar to centralized algorithm. The computation

of the shortest path by each node is done separately based on

link cost information received and available at a node. Link

cost seen by node i at time t regarding a link is : d[v](t).

 The main idea of the decentralized approach of Dijkstra

Algorithm is that it starts with a flooding operation in order to

discover the topology of the network i.e. each router sees only

local information.

 Flooding Function:

 Each node acts as both a transmitter and a receiver.

 Each node tries to forward every message to every

one of its neighbours except the source node.

The idea of flooding is very simple:

 Each node had a bit (implemented as boolean) sent

initialized to FALSE.

 Initially the source node sends a packet pck to all its

neighbors and set sent to TRUE.

 Every neighbor: When receiving pck and sent is

FALSE: it sends a pck to all neighbors,

 Update the routing table in each node traversed by

pck and set sent to TRUE, until all network nodes are

traversed by pck.

As result of flooding, we have a global view of network. Now,

we can apply Dijkstra's shortest path algorithm as follows:

Algorithm: Dijkstra (Decentralized Approach)

1 Flooding()

2 dist[s](t) ←0

3 for all v ∈ V–{s}

4 do dist[v](t) ←∞

5 S←∅

6 Q←V

7 while Q ≠∅

8 do u ← mindistance(Q,dist(t))

9 S←S∪{u}

10 for all v ∈ neighbors[u]

11 do if dist[v](t) > dist[u](t) + w(u, v)(t)

12 then d[v](t) ←d[u](t) + w(u, v)(t)

13 return dist(t)

- Time Complexity : is equivalent to the diameter of the Graph

VI. Implementation and
Simulation

 Review of Simulators
Here we give a review of the most used simulators in this area

(Modeling and Simulation) :

 GraphStream: is a Java library that focuses on aspects of

dynamic graphs. Its main objective is network modeling of

dynamic interactions of different sizes. The purpose of the

library is to provide a means of representing static and

dynamic graphs, for this GraphStream offers several

classes of graphs can model directed graphs and

undirected. GraphStream can store any type of data on

chart elements: numbers, strings or any other type of

object. Furthermore, in addition, GraphStream provides a

way to manage the evolution of the graph in time. This

means manipulating the way the nodes and edges are

added and / or deleted, and how the data attributes can

appear, disappear and evolve [12].

 Grph: is a Java library for manipulating graphs. According

to its original motivation: useful for experimentation

graphs and network simulation [13]. Grph also has the

feature to come with tools such as a calculation engine of

evolution, a bridge linear solvers, a Framework for

distributed computing.

 NS-2: This is an event-based simulator and discreet

evolution of the modeled environment. The monolithic

kernel is implemented in C ++ and additional modules are

integrated. Its configuration is done using a scripting

language (otcl derived from TCL). This is a free project.

Initially the simulator running on a single CPU and

suffered from poor performance with the inability to

simulate more than a few hundred stations [14]. This issue

is now resolved, a module responsible for distributing the

simulation starts on different processors instances of the

simulator by partitioning the simulated network.

 NetLogo: is particularly appropriate to simulate very

complex systems that develop over time. Modelers can

give instructions to hundreds of NetLogo agents who are

independent and that compete. This provides the

opportunity to explore the connections between the

behavior of individuals (micro level) to the emergence of a

global behavior (macroscopic level).

 Madhoc: It is a mobile network simulator for the design

and analysis of distributed algorithms. It is developed in

parallel by the University of Luxembourg and the

University of Le Havre by L. Hogie [15]. It is used

especially for generating dynamic graphs, incorporating

the constraints of MANETs (stations behavioral patterns,

mobility models, environmental models, etc.).

 OPNET : has very good interfaces and inherits advantages

from C++ language but its extendibility is far beyond from

a researchers needs. The developed simulator in this study

is tried to merge such properties in a single platform and

exploits Java advantages.

 OMNET++ : is well object-oriented and has modular and

hierarchical structure, but is difficult to deploy due for its

highly platform dependent programming language.

A. Netlogo
 NetLogo is particularly appropriate to simulate complex

systems that develop over time. Modelers can give instructions

to hundreds of NetLogo agents who are independent and that

compete. This provides the opportunity to explore the

158

Proc. of the Second Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-044-6 doi: 10.15224/ 978-1-63248-044-6-125

connections between the behavior of individuals (micro level)

to the emergence of a global behavior (macroscopic level).

The major characteristics of NetLogo are:

 a fully programmable simulator,

 it uses mobile agents moving in a grid of stationary

agents,

 It uses links that can be created between the agents to

allow the establishment of a network,

 an unlimited number of agents and variables can be used

in the simulation,

 a wide vocabulary for a programmable primitive

language,

 NetLogo is a simulator for complex dynamic systems.

With the agent-based approach, you can program the

behavior of individual agents and NetLogo shows what can

emerge from their interactions. With a dynamic system

modeler, he don't program the behavior of different agents.

Thus it is necessary to program the population of just how

agents behave as a whole. There are four types of agents

 Patches: are the spatial components of the "world" that is

modeled; the agents move patches and patches can store

variables.

 Turtles: these are our individual agents, they have

features, they move into the world, they are born and

dead.

 Links: a particular type of agent that connects two agents

and is represented as a line drawn between these agents.

This link can be oriented or not.

 The Observer has no specific position, it can imagine

looking from above the world of turtles and patches.

B. Simulation Results and discussion
There exists a variety of mobility models which are

currently used within the mobile ad hoc networking

community. We used the most popular one, the random

waypoint mobility model (RWP). As described in [9], each

node randomly chooses a destination location (in terms of its

x, y coordinates) in the simulation area and moves towards

this destination with a randomly chosen velocity. When the

destination is reached, the station remains a tthe same place

for a while. Once this time expires, the node chooses a random

destination in the simulation area and a speed that is uniformly

distributed in [minspeed, maxspeed] [1].

The experiments were carried out on a PC of Intel Pentium

Core2 Duo processor with 2.4 GHz CPU and 3 GB of RAM.

As we said before, we used Netlogo (version 5.0.5)Simulator,

fig. 3 shows the simulation environment :

Fig 3. Simulation environment

Here we use the following configuration (Initialization) :

 24 nodes.

 30m as transmission range.

 Node number 4 as specific destination for the

study case.

In the proposed (decentralized) approach, we have

introduced 3 scenarios : dynamic topology, nodes addition

and nodes remove, and in every scenario we trigger the

flooding process. We discuss each scenario separately.

1. Display area

2. Nodes number

3. Transmission range

4. Specific destination

5. Initialization

6. Dijkstra's Algorithm

7. Optimal paths from

source to all orher

nodes

8. Specific path

1

8

7

5

4

3

2

6

159

Proc. of the Second Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-044-6 doi: 10.15224/ 978-1-63248-044-6-125

a) Dynamic topology
In dynamic topology scenario, nodes move randomly in

the simulation area according to RWP mobility model.

Obtained results are shown in Fig. 6 and Fig. 7.

Fig. 6 Dijkstra's Algorithm

(dynamic topology scenario)

Fig. 7 Specific path (to node 4)

(dynamic topology scenario)

Fig. 6 shows the result of Dijkstra's Algorithm (dynamic

topology scenario) that is colored on orange color, it

converges quickly. The routing table in this case is (source =

node 0):

{{table: [[0 [0]] [3 [0 3]] [19 [0 19]] [9 [0 9]] [12 [0 12]] [23

[0 23]] [5 [0 5]] [14 [0 14]] [6 [0 6]] [17 [0 17]] [7 [0 7]] [21

[0 23 21]] [22 [0 19 22]] [2 [0 19 2]] [16 [0 5 16]] [13 [0 7

13]] [15 [0 14 15]] [18 [0 6 18]] [8 [0 7 8]] [20 [0 7 20]] [11

[0 5 16 11]] [1 [0 5 16 1]] [10 [0 14 15 10]] [4 [0 7 20

4]]]}}.

Fig. 5 demonstrates the specific path, it is mentionned in

blue color. Its routing table is : [0 7 20 4].

b) Nodes addition
Here, we apply the scenario of node addition: we add 3

nodes randomly in the network, after that we apply

Dijkstra's algorithm (see Fig. 8, orange color), also we

observe our specific path (see Fig. 9, blue color).

Fig. 8 Dijkstra's Algorithm

(nodes addition scenario)

Fig. 9 Specific path (to node 4)

(nodes addition scenario)

The routing table, in this scenario, becomes as follow :

{{table: [[0 [0]] [24 [0 24]] [3 [0 3]] [19 [0 19]] [9 [0 9]] [23

[0 23]] [14 [0 14]] [12 [0 12]] [5 [0 5]] [17 [0 17]] [6 [0 6]]

[7 [0 7]] [26 [0 14 26]] [25 [0 3 25]] [2 [0 19 2]] [22 [0 19

22]] [16 [0 5 16]] [13 [0 7 13]] [8 [0 5 8]] [15 [0 14 26 15]]

[18 [0 6 18]] [20 [0 6 20]] [1 [0 5 16 1]] [10 [0 14 26 10]] [4

[0 14 26 10 4]]]}}, The routing table of our specific

destination becomes : [0 14 26 10 4].

c) Nodes remove:
The last scenario in our study is remove nodes. here we

remove 2 nodes randomly (except source and destination

nodes), then we apply Dijkstra's algorithm as depicted in

Fig. 10 with the orange color, also we observe our specific

path (the blue path, see Fig. 11).

160

Proc. of the Second Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-044-6 doi: 10.15224/ 978-1-63248-044-6-125

Fig. 10 Dijkstra's Algorithm

(nodes remove scenario)

Fig. 11 Specific path (to node 4)

 (nodes remove scenario)

In this scenario, The routing table is as follow :

{{table: [[0 [0]] [3 [0 3]] [24 [0 24]] [19 [0 19]] [23 [0 23]]

[9 [0 9]] [14 [0 14]] [12 [0 12]] [17 [0 17]] [5 [0 5]] [6 [0 6]]

[29 [0 29]] [7 [0 7]] [28 [0 28]] [2 [0 19 2]] [22 [0 3 22]] [27

[0 9 27]] [25 [0 3 25]] [16 [0 7 16]] [8 [0 7 8]] [13 [0 14 13]]

[15 [0 28 15]] [18 [0 6 18]] [1 [0 7 16 1]] [10 [0 28 15 10]]

[4 [0 9 27 4]]]}}, The routing table of our specific

destination becomes : [0 9 27 4].

VII. Conclusion
We have successfully implemented distributed Dijkstra’s

shortest path algorithm to solve the routing problem. Results

show that Dijkstra’s Algorithm converges quickly finding

the shortest path between a source node and the other

accessible nodes of network. The utility of graph theory

algorithms is to bring solutions to routing problem (network

overload) in MANET (enhance routing protocols). Netlogo

aim to model a distributed, decentralized approach for

searching the shortest path (routing) in the network. As

future work, we plan, for this system, to use approaches

based ants, bees and Cuckou search.

References
[1] Hogie L., Mobile Ad Hoc Networks: Modelling, Simulation and

Broadcast-based Applications“, France: University of Le Havre, 165
p., Doctorate dissertation, (April 2007).

[2] Niazi M., Hussain A.Agent based Tools for Modeling and Simulation
of Self-Organization in Peer-to-Peer, Ad-Hoc and other Complex
Networks”, IEEE Communications Magazine, Vol.47 No.3, (March
2009), pp. 163 – 173.

[3] Heidemann J., Bulusu N., Elson J., Intanagonwiwat C., Lan K., Xu
Y., Ye W., Estrin D., Govindan R..: “Effects of detail in wireless
network simulation”, In Proceedings of the SCS Multiconference on
Distributed Simulation, (2001), pp. 3 – 11.

[4] Tuduce C., Gross T., A mobility model based on WLAN traces and
its validation“, In Proc. of the 24th IEEE International Conference on
Computer Communications (INFOCOM), Miami, United States of
America, (March 2005), pp. 664 – 674.

[5] Yoon J., Liu M., Noble B., Random waypoint considered harmful” In
INFOCOM: Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications Societies, 2003, pp. 1312 –1321.

[6] Bettstetter Ch., Resta G, Santi P., The node distribution of the random
waypoint mobility model for wireless ad hoc networks”, In IEEE
Transactions on Mobile Computing, 2(3), (2003), pp. 257–269.

[7] Jardosh A., Belding-Royer E. M., K. C. Almeroth, Suri S.: „Towards
Realistic Mobility Models For Mobile Ad hoc Networks“, United
States of America, Department of Computer Science, University of
California, (2003).

[8] Miroslav Babiš, Peter Magula; "NetLogo – an alternative way of
simulating mobile ad hoc networks"; Wireless and Mobile
Networking Conference (WMNC), Bratislava, 122 – 125, 2012

[9] Christian Bettstetter, Giovanni Resta, and Paolo Santi. The node
distribution of the random waypoint mobility model for wireless ad
hoc networks. IEEE Transactions on Mobile Computing, 2003.

[10] B. N. Clark, C. J. Colbourn, and D. S. Johnson, "Unit disk graphs,"
Discrete Math., vol. 86, pp. 165-177, 1990.

[11] F. Kuhn, T. Moscibroda, and R. Wattenhofer, "Unit disk graph
approximation," presented at the Proceedings of the 2004 joint
workshop on Foundations of mobile computing, Philadelphia, PA,
USA, 2004.

[12] A. Dutot, F. Guinand, D. Olivier and Y. Pigné, 2007: GraphStream: A
tool for bridging the gap between complex systems and dynamic
graphs , in Emergent Properties in Natural and Artificial Complex
Systems (EPNACS'07), Workshop of the 4th European Conference
on Complex Systems (ECCS'07), Dresden, Germany

[13] http://www.i3s.unice.fr/~hogie/grph/

[14] http://nsnam.isi.edu/nsnam/index.php/Main_Page

[15] Luc Hogie. Madhoc, a mobile ad hoc network simulator
http://agamemnon.uni.lu/~lhogie/madhoc/, 2003-2008.

About Author (s):

Akram Kout is a PhD Student in MISC

Laboratory at the Constantine University, Algeria.

His research areas include routing algorithms for

mobile ad-hoc networks, graph theory.

Image

Said Labed received his PhD in Computer

Science from the University of Constantine, in

2013. He is member of MISC Laboratory. His

research areas include soft computing, artificial

life, distributed systems.

Image

Salim Chikhi is currently a Professor at the

Constantine 2 University, Constantine, Algeria.

He is the leader of the SCAL team of MISC

Laboratory. His research areas include soft

computing and artificial life techniques and their

application.

Image

