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ENCLOSURE 
 

Kherief Nacereddine Mohamed, K. Talbi and F.Berrahil 
 

ABSTRACT.  

Rayleigh–Bénard convection is a fundamental 

phenomenon found in many atmospheric and 

industrial applications. Many numerical methods 

have been applied to analyze this problem. The 

effects of oscillatory flow structures on transient 

convective heat transfer in an air-filled shallow 

enclosure with a vibrating side wall are 

investigated. Oscillatory flows and Rayleigh-

Bénard convection have been extensively studied. 

In the present study, fluid motion is driven by the 

periodic vibration of the enclosure side wall. The 

vertical walls of enclosure are adiabatic while the 

bottom wall is isothermally heated and the top wall 

is kept at an initial temperature. The fully 

compressible forms of the Navier-Stokes and 

energy equations are considered to compute the 

interaction of oscillatory and gravitational flow 

fields. A finite-volume method based, explicit 

time-marching Flux-Corrected Transport 

Algorithm is used to simulate the transport 

phenomena in the enclosure. The results of a test 

case simulation with stationary walls are compared 

with the existing literature for the validation of the 

algorithm utilized. The oscillatory fluid motion 

significantly changes the transient behavior of the 

thermal transport in the enclosure compared to the 

pure Rayleigh-Bénard convection. 

 

 

 Keywords: Rayleigh-Bénard convection, periodic 

vibration, finite volume 
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1. INTRODUCTION 

     A pressure wave field in a fluid can generate a 

secondary, steady circulatory flow termed as acoustic 

streaming. Acoustic streaming can enhance heat transfer 

and mixing. The acoustic streaming phenomenon has been 

extensively studied by using theoretical and experimental 

methods. However, the investigations on irregular acoustic 

streaming structures and effect of various parameters on 

irregular streaming are relatively scarce. Merkli and 

Thomann [1] observed irregular circulations in a Stokes  
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layer resulting from the transition to turbulence and 

obtained a critical Reynolds number (with present 

nomenclature, 2umax/(νω)
1/2

≈400).  Kawahashi and 

Arakawa [2] numerically studied acoustic streaming in a 

closed duct. They predicted shock wave propagation due to 

finite amplitude oscillations and distortion of the streaming 

structures. Yano [3] performed computational study of 

acoustic streaming formed by resonant oscillations with 

shock waves in a gas filled tube. For high streaming 

Reynolds numbers, irregular streaming patterns having 

vortices of various scales were predicted. Menguy and 

Gilbert [4] presented a comparison of slow and nonlinear 

acoustic streaming. The study focused on the distortion of 

the streaming field due to fluid inertia. A perturbation 

calculation using asymptotic expansions was performed and 

the unsymmetrical pattern of fast streaming was 

demonstrated. Alexeev and Gutfinger [5] investigated the 

periodic gas oscillations in closed tubes experimentally and 

numerically. They reported shock waves propagating along 

the tube.  

 Aktas and Farouk [6] carried out a computational study to 

determine the influence of the wave form on streaming 

patterns in a two dimensional enclosure. For sharp pressure 

gradients, irregular streaming patterns were predicted. The 

influence of temperature gradients on acoustic streaming 

flows has been studied by several researchers. Thompson  
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 and Atchley [7] conducted acoustic and streaming velocity 

measurements in an air-filled cylindrical resonator by 

employing laser Doppler anemometry technique. Using this 

experimental method, Thompson et al. [8] investigated the 

effects of a thermoacoustically induced axial temperature 

gradient and fluid inertia on the acoustic streaming 

generated in the resonator. A strong dependence between 

the temperature gradient and the streaming structures was 

reported. The streaming velocities decrease with increasing 

temperature gradient and the distortion of the streaming 

patterns is observed. Murat K. Aktas [9] studied the 

irregular acoustic streaming in symmetrically heated (for 

horizontal walls) rectangular enclosures. A parametric 

study is performed in order to evaluate the effect of wall 

displacement amplitude, enclosure height and wall 

temperature on transport phenomena in the enclosure. 

          Due to its practical importance in many general 

science and engineering applications, Rayleigh–Bénard 

convection has been the subject of many theoretical, 

experimental, and numerical studies. Since Rayleigh–

Bénard convection presents the evolution from the 

stationary state to the fully developed turbulent regime with 

many different flow patterns and sequences of bifurcations, 

it is widely investigated as the problems of different 

transition mechanisms in hydrodynamics [10–13]. 

In Rayleigh–Bénard convection, the primary instability, 

which represents a transition from diffusive thermal 

conduction to stationary time-independent steady 

convection with a structure of steady 2D rolls, occurs at a 

critical Rayleigh number of Rac = 1707,76 for the case of 

no-slip boundary conditions imposed on solid walls. The 

value of this critical Rayleigh number is independent of the 

Prandtl number. However, as the Rayleigh number 

increases, a bifurcation to a time-dependent flow structure 

with a single-frequency periodic state is observed, namely 

the secondary instability. This transition to the secondary 

instability is strongly dependent on the Prandtl number. 

Moreover, as the Rayleigh number is increased further, 

two-frequency quasi-periodic flow is generated from the 

single-frequency oscillatory state and the flow finally 

transits to a chaotic state in the fully developed turbulent 

regime. Early experimental results for the transition to 

turbulence in Rayleigh–Bénard convection were presented 

by Krishnamurti [14]. 

    For a three-dimensional, incompressible flow heated 

from below, bifurcation patterns for different Prandtl 

numbers were investigated numerically by Bucchignani and 

Stella [15]. Semih and Murat [16] studied the effects of 

oscillatory fluid motion on Rayleigh-Bénard convection in 

a rectangular enclosure was investigated. 

         In this study, they also examined the transition from 

oscillatory behavior to the chaotic behavior for the same 

geometry and flow characteristics. In these studies, 

incompressible Newtonian fluid was analyzed by 

employing the Boussinesq approximation. In the present 

study, the effects of oscillatory fluid motion on Rayleigh-

Bénard convection in a rectangular enclosure are 

investigated.  

The predictions of flow structure and the temperature 

values for the pure Rayleigh-Bénard convection were 

compared with the literature to validate the numerical 

methodology that was used. The interaction of the 

oscillatory flow field and Rayleigh-Bénard convection cells 

were simulated and the augmentation of heat transfer from 

the bottom wall was evaluated. 

 

2. MATERIAL AND METHODOLOGY 
 

        A two-dimensional shallow enclosure filled with air is 

considered Figure 1. The enclosure height is 10 mm and the 

length is 40 mm. Corresponding aspect ratio of the 

enclosure is 4. Air is heated from the below by Th 

temperature and cooled from above by Tc temperature and 

the vertical walls of enclosure are adiabatic. 

 
Figure 1. Problem geometry and corresponding 

boundary conditions. 

         No-slip boundary condition was implemented for all 

solid walls. The oscillatory motion of air is driven by the 

harmonic vibration of the left wall at certain frequency. The 

frequency of wall is chosen as to create a standing wave at 

the first fundamental mode in the enclosure in order to 

maximize the pressure wave amplitudes and oscillatory 

flow velocities. 

 

2.1 Interaction of mechanically driven heat 

transfer in a closed rectangular chamber: 
     A sound field is formed by a series of compressions and 

expansions of a substance, which obey the laws of 

thermodynamics, heat transfer, and fluid mechanics. It is 

essentially characterized by the pressure p, corresponding 

density ρ, temperature T, and velocities. Hence, an accurate 

mathematical model must be able to describe the 

compressible behavior of the substance in question. In this 

study, the compressible form of the Navier-Stokes 

equations in 2-D Cartesian coordinate system, including the 

conservation of mass, momentum and energy, along with a 

state equation, are used as the governing equations: 
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The effect of gravity is not considered in the present 

numerical simulations. Here 
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The components of the stress tensor τ are:   
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 where μ is the shear viscosity. The components of the heat-

flux vector are written as: 

x

T
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where k is thermal conductivity and T is temperature. The 

ideal gas law is; 

RTp 

                                                                         

(9)

 Where R=287 J/kgK is the gas constant of air. 

 

The finite-volume method is used for the numerical 

resolution the system of transport equations:  
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Where Ui is the local convection velocity, D1, D2, and D3 

are additional source terms. The quantity Φ can be any flow 

variable, such as density ρ, momentum flux (ρu, ρv, ρw) or 

energy E. The value C2 can either be a constant or a 

function of convected variables. 

        The governing equations (except for the diffusion 

terms) are discretized using a finite-volume method based 

on the flux-corrected transport (FCT) algorithm. FCT is a 

high-order, nonlinear, monotone, conservative and 

positivity-preserving method designed to solve a general 

one-dimensional continuity equation with appropriate 

source terms. 

This scheme has fourth-order phase accuracy and is able to 

resolve step gradients with minimum numerical diffusion. 

The diffusion terms (the viscous term in the momentum 

equations and the conduction terms in the energy equation) 

were discretized using a second-order central difference 

approach. Time-step splitting was also used to couple all of 

the representative physical effects. 

No-slip boundary conditions were used at all solid walls. In 

the present computational method, the treatment proposed 

by Poinsot and Lele was followed for implementing the 

boundary conditions for the density. 

Initial and Boundary Conditions  

The boundary conditions of the problem under 

investigation are:  

u(0,y,t) = v(0,y,t) = 0  

u(L,y,t) = v(L,y,t) = 0         u(x,0,t) = v(x,0,t) = 0  

u(x,H,t) = v(x,H,t) = 0            0,,,,0 








tyL

y

T
ty

x

T  

T(x,0,t) = Th                                            T(x,H,t) = Tc 

The initial conditions are:  p(x,y,0) = 101325 Pa; T(x,y,0) = 

300 K; ρ(x,y,0) = 1.1768 kg/m
3  

        The boundary conditions for the higher order FCT-

based solutions of the Navier-Stokes equations require a 

rigorous formulation. No-slip boundary conditions are used 

for velocity on all walls. The wall boundary conditions for 

density are updated using the formulation developed by 

Poinsot and Lele [17] based on characteristic wave 

relations. The use of this method avoids over-specification 

of variables and incorrect extrapolations from interior point 

values. 

 

         The stated equations in the previous section were 

solved by using a finite volume based explicit time 

marching flux corrected transport (FCT) algorithm. The 

reason behind using this algorithm for the numerical 

simulations lies in the fact that it has relatively higher 

ability to resolve steep gradients with minimum numerical 

diffusion. FCT is a high-order, nonlinear, monotone, 

conservative and positivity-preserving method designed to 

solve a general one-dimensional continuity equation with 

appropriate source terms. The diffusion terms (the viscous 

term in the momentum equations and the conduction terms 

in the energy equation) were discretized using a second-

order central difference approach. Time-step splitting was 

also used to couple all of the representative physical effects. 

A more detailed discussion of FCT algorithm is performed 

by Oran and Boris [18]. 

As stated in the study of Tillet et al. [19], higher order, non-

dissipative algorithms such as FCT, requires a great 

vigilance to prevent the spurious wave reflections in the 

vicinities of boundaries and nonphysical numerical 

oscillations arising from instabilities when the boundary 

conditions are being implemented. In present study, 

treatment proposed by Poinsot and Lele [17] is used to 

accurately compute the density along the stationary no-slip 

walls. 

Since an algorithm based on explicit numerical method is 

employed, the CFL (Courant-Friedrichs- Lewy) stability 

condition is important. In order to satisfy the stability 

criteria the time step size of the computations was chosen 

based on: 
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The selected CFL number for the analysis is 0.4 which is 

already smaller than the necessary value of 0.5. [16]   

In the present numerical simulations typically 201 x 51 

uniform numerical meshes are utilized to be small enough 

considering the computational time constraint for the 

enclosure having the height of 10 mm and length of 40 mm, 

respectively. The computations performed using even 

denser numerical mesh did not alter the results significantly 

as shown in the next section. 

 

        For the code validation purpose, the pure Rayleigh-

Bénard convection predictions of Soong et al. [20] were  
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 used. In the aforementioned study, for A=4 and Ra=10000, 

the bottom and the top wall temperatures was taken as 

Th=320 K and Tc=300 K, respectively ( ΔT = 20K ). The 

dimensionless maximum velocity components u and v and 

Nu number was compared with the existing data. For the 

comparison of these parameters, length and velocity 

components are non-dimensionalized by H and α/H 

respectively. Nusselt number is calculated as: 

T

H
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Maximum velocity components and Nusselt numbers 

obtained from the base case simulation are presented in the 

Table 1.  

Table 1. Comparisons of the obtained results with the 

literature. 

        The present numerical predictions agree quite well 

with literature. Soong et al. [20] employed Boussinesq 

approximation in their work. Since fully compressible 

formulation is employed in the present work vmax value 

slightly differs from the prediction of Soong et al. 

v velocities at x=L/2. 
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Figure 2. v-velocity values for different mesh 

configurations at x=L/2. 

 

As it can be observed from Fig.2, using denser meshes in 

both height and length scale of the enclosure did not alter 

the results significantly. Effects of using different mesh 

structures on the bottom wall Nusselt numbers are also 

investigated and results are presented in Table 2.  

 

Table 2. Comparison of Nusselt numbers for different 

mesh values. 

    It can be seen that using approximately 10% denser mesh 

in both x and y direction changes the bottom wall Nu 

number as 1.5 %. 

Fig. 3 and Fig.4 depict the time evolution of the flow field 

and temperature distribution at different instants for the 

case of pure Rayleigh-Bénard convection. The flow field 

and corresponding temperature distribution are consistent 

with the literature. 
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Figure 3. Velocity vectors for different instants for pure 

Rayleigh-Bénard convection (a) t=1.5 s, (b) t=3s, (c) 

t=5s. 

 

       At relatively early times (1.5 s) the velocity values are 

rather small while the characteristic nature of the Rayleigh-

Bénard cells for A=4 starts to be established (Fig. 3a). At 3 

s., the typical cell structure develops but the velocity values 

continue to increase further (Fig. 3b). At 5 s., the typical 

cell structure (Ga=10000) with two clock wise and three 

counter clock wise rotating vortices fully develops (Fig. 

3c). The time evolution of the temperature distribution in 

the flow domain for pure Rayleigh-Bénard convection was 

presented in Fig.4. The diffusive transport dominates 

temperature field at early times (Fig. 4a). At 3 s., the 

characteristic temperature distribution in Rayleigh-Bénard 

for A=4 starts to be established (Fig. 4b). At 5 s., fully 

developed Rayleigh- Bénard convection cells are observed. 

The fully developed temperature field completely agrees 

with the results in the literature. 
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Figure 4. Temperature distribution for different 

instants for pure Rayleigh-Bénard convection at (a) 

t=1.5 s, (b) t=3 s, (c) t=5s. 

 

2.2 Interaction of mechanically driven acoustic 

wave and heat transfer in a closed rectangular 

chamber: 

 
     The vibration frequency of the harmonic vibration of the 

enclosure is chosen as f= 2893 Hz. Four different maximum  
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 displacement values were considered. As a rule of thumb, 

particle velocity (velocity amplitude) should be equal to 

ratio of the pressure to specific acoustic impedance (p/Z) 

and the calculation, the specific acoustic impedance is 

taken as Z=413 (Ns/m3) for the air of T=20
0
C. [16]. 

In the simulation of the oscillatory flow and Rayleigh-

Bénard convection, the left wall of the enclosure is 

harmonically vibrated by the formula of X = Xmaxsinωt  

In the present study, ω (angular frequency) is selected as 

18177 rad/s (f= 2893 Hz) and the maximum wall 

displacement is selected as 5μm, 3μm and 1μm. 

In the two-dimensional Cartesian coordinate system, the N-

S equations are expressed in the non-dimensional 

conservative form as: 

 

 
Figure 5. Problem geometry and corresponding 

boundary conditions. 
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Here, St is Strouhal Number 
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The dimensionless variables are: 
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    Here, the variables with subscript 0 are the initial values. 

The quantity u0* is wall vibration amplitude, and ω* is the 

angular frequency of wall vibration. 

The fluid thermophysical properties in the dimensionless 

group, Re, St, Ec and Pr, are evaluated at the initial 

temperature, and the specialized velocity used is the 

maximum velocity of the left wall vibration. 

Initial and Boundary Conditions  

The boundary conditions of the problem under 

investigation are:  

u(0,y,t) = ωXmaxcosωt                           v(0,y,t) = 0  

u(L,y,t) = v(L,y,t) = 0                           u(x,0,t) = v(x,0,t) = 0  

u(x,H,t) = v(x,H,t) = 0      

    0,,,,0 








tyL

y

T
ty

x

T  

T(x,0,t) = Th                                          T(x,H,t) = Tc 

 

Fig.6 depicts that when the wall displacement value 

increases the amplitude of the pressure oscillations also 

increases both for the left wall. Stronger pressure waves 

drive stronger fluid motion in the enclosure. The 

enhancement of the flow velocity increases the convective 

heat transfer from the bottom wall.  

 

 
Figure 6. Time evolution of relative pressure wave 

amplitudes for different wall displacement values at the 

vicinity of t=0.01 

The time averaged flow fields in the enclosure in the 

enclosure at 5 s are shown in Fig. 6 for different cases. By 

this time the time averaged velocities reach pseudo-steady 

values. The time averaging is applied to instantaneous 

velocity values for one period of wall vibration and pseudo-

steady velocity values are obtained. 

In Fig. 7a, the signature of the flow field is quite similar to 

that of pure Rayleigh-Bénard convection except the rotation 

direction of the cells. This pattern indicates a stronger flow 

field (due to oscillatory wall motion) which has similar to 

Bénard cells but has opposite flow direction. 
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Figure 7. Cycle averaged velocity vectors for different 

wall displacement values (a) Xmax=1μm, (b) 

Xmax=3μm and (c) Xmax=5 μm. 
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 Fig.7 shows that below the wall displacement value 3 μm, 

the flow field significantly changes. Because of this 

alteration in the flow field, Nusselt number for these Xmax 

values significantly lower than the higher Xmax values 

explained in the Table 3 below.  

Table 3 presents the Nusselt numbers from the bottom wall 

for these different maximum left wall displacement values.  

 

Table 3.  Average heat transfer from the bottom wall 

for different left wall displacement values. 

3. CONCLUSIONS 

       This study performed a series of simulations of 2D 

Rayleigh-Bénard convection and an oscillatory flow in a 

differentially heated enclosure is numerically simulated. 

       The wall vibration driven flow effects Rayleigh-Bénard 

convection in a considerable extent and the oscillatory fluid 

motion significantly changes the transient behavior of heat 

transfer in the enclosure compared to Rayleigh-Bénard 

convection. 

        It is observed that with the increment in the left wall 

vibration, the flow field significantly differs from the 

classical Rayleigh-Benard convection cell structure and as a 

result of this; flow inside the enclosure apt to generate a 

secondary circulating motions. Furthermore, the last cycle 

averaged bottom wall Nusselt values increases proportional 

to the left wall displacements. It is observed that while the 

classical Rayleigh-Benard convection has a bottom Nu 

value of 8.29 (Ga=10000), when 5 μm amplitude of 

vibration is applied to the system, this value increases to 

25.84 which is about the 4 times higher than the original 

value. 
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NOMENCLATURE 
α          Thermal diffusivity coefficient           m

2
/ s 

A         Aspect ratio                                         L/H 

β          Thermal expansion coefficient            K
-1

 

H          Height of enclosure                            m 

L           Length of enclosure                           m 

p            Dimensionless pressure                    P/ρU
2
 

Ra          Rayleigh number                      gβ(Th-Tc)H
3
/αν 

M          Mach number 

Pr          Prandtl number 

Re         Reynolds number 

St          Strouhal Number                               ωL/u0 

Ec         Eckert Number 

F           frequency 

τ           Dimensionless time                            tα/H
2
 

U,V      Velocity components                          m/s 

u,v        Dimensionless vel. Comp                  U/(α/H) 

ω          Angular frequency                                 2πf 

τ           Dimensionless temp.                     ((T- Tc)/(Th-Tc)) 

x,y        Dimensionless coordinates                (X/H), (Y/H) 

X          wall displacement 

γ           ratio of specific heat 

cp         specific heat at constant pressure 

cv         specific heat at constant volume 

Wall displacement  Cycle averaged Nu 

number for the bottom 

wall at 5 s  

5 μm   

3 μm   

1 μm   
 

25.84  

19.57  

8.29  
 


