

72

Proc. of the Second Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-044-6 doi: 10.15224/ 978-1-63248-044-6-27

CodeRoid: a Framework for Generating Java

Sourcecode Using Tablets and Smartphones
Fadi Wedyan, Suzan Wedyan, and Hani Bani-Salameh,

Abstract—Smartphones and tablets are gaining more

popularity due to their increasing capabilities and affordable

prices. While most of the applications built for these devices are

business, social, or entertainment oriented, few applications

provide tools for developers. This is because of the limited screen

size and the virtual keyboards that do not provide a comfortable

programming environment. In this paper, we propose a

framework, called CodeRoid, for developing Java programs that

can be used on tablets and smartphones. Using CodeRoid,

developers visually interact with the device to specify the

specifications of the required code and CodeRoid automatically

generates the required Java source files. CodeDroid provides the

building programming blocks which the developer can choose

and customize. CodeRoid checks the syntax of the produced Java

files. In order to minimize the memory and computational

requirements. Java source files can be sent to a server to produce

the bytecode. Therefore, a complier and a JVM are not required.

CodeRoid is developed with Android and set to run on

smartphones and tablets with different screen sizes,

computational and memory capabilities. The current version of

the framework generates Java sourcecode, however, it can be

extended to support other object-oriented programming

languages (e.g., C++).

Keywords—Software tools, development environment, Java,

Android, Smartphone, Tablet

I. Introduction
The rapid technological advances are changing many

aspects of our lives and altering the way we work, study, or
entertain. It is apparent today that the power of technology
appear to be unlimited, unpredictable, and it has contributed
hugely to our mobility, which has lead us from the decedent
huge machines with the goal of minimization and optimization
to the smartphone devices that are ubiquitous. Most of the
applications on smart devices can be categorized as either
business, social, educational or entertainment oriented.
Smartphones and tablets are not being effectively utilized for
developing due to some limitations of the devices. Mainly, the
devices limited screen size, limited power, limited processors,
and the limitations of the virtual keyboard, which make such

Fadi Wedyan and Hani Bani-Salameh

Department of Software Engineering, Hashemite University
Zarka, 13315 Jordan

Suzan Wedyan

Department of Computer Science, Amman Arab University
Amman, Jordan.

devices inconvenient environment for software developing.
However, these limitations are gradually oppressed. For
example, manufactures began producing Smartphones with
larger screen sizes and increasing computational power.

Tablets come with screen sizes that are suitable for
developing. Battery lives keep increasing. These advances in
the hardware technology encourage developing applications
that can be used for software development. In this paper, we
propose a framework, called CodeRoid, (Coding on Android)
for developing Java programs that can be used on tablets and
smartphones. Using CodeRoid, developers visually interact
with device to specify the specifications of the required code,
and CodeRoid automatically generates the required Java
source files without requiring a Java compiler to be installed
on the tablet or smartphone. Therefore, considering the limited
power and memory resources of tablets and smartphones. The
specifications can be given to CodeRoid by customizing
programming building blocks. CodeRoid then generates the
corresponding Java source code with limited typing
requirements from the developers. The framework has the
following attributes:

1) Provides a comfortable developing environment that
takes into consideration the characteristics of the screen and
keyboard of a tablet or a smartphone.

2) Generates code by instructions given by developers.
These instructions are validated to produce a syntactically
correct code.

3) Does not require installing a compiler on the device,
therefore saving the limited memory and processing resources
of the device.

4) CodeRoid is developed as a framework in order to allow
extending it to generate code for other object-oriented
programming languages.

CodeRoid is designed and implemented keeping in mind
the importance of achieving the following attributes:
reliability, usability, extensibility, and robustness. CodeRoid is
developed with Android and set to run on devices with
different screen sizes. The framework has limited memory
requirements (requires about 2 MB) and works offline. We
tested the framework using different devices including
Samsung Galaxy S3, Samsung Galaxy S4, Samsung Note 3,
and Samsung Galaxy Tab 3 (with screen sizes 7 and 8 inches).
The extensibility feature of CodeRoid allows us to extend the
framework to run on other platforms (e.g., iOS for iPhones)
and develop other similar object-oriented programming
languages (e.g., C++).

The rest of the paper is organized as follows. In Section II,
we summarize related work in using smartphones and tablets
for developing Java programs, and in auto-generation of Java

73

Proc. of the Second Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-044-6 doi: 10.15224/ 978-1-63248-044-6-27

programs. We describe how CodeRoid is designed and
implemented in Section III. In Section IV, we demonstrate
how CodeRoid can be used to develop Java programs. Finally,
conclusions and future work are given in Section V.

II. RELATED WORK
Few IDE’s are available for developing Java, Android, or

C/C++ on smartphones and tablets. All these applications
require the developer to code using an editor. Some of these
applications require a Java compiler and a JVM to be installed
on the device. Terminal IDE [1] is a terminal application, with
a full Java/C/C++/HTML/Android development kit. It uses the
command line, with many powerful and robust open-source
applications, plus a custom ASCII on-screen soft keyboard
that works well (You must enable it in your device’s main
Keyboard Settings).

AIDE [2] is an IDE for developing Android application
directly on smartphones and tablets. The application allows
writing code with an editor with code auto-completion,
realtime error checking, refactoring, and smart code
navigation. AIDE features interactive lessons with step-by-
step instructions to learn Android applications development
and Java programming skills. AIDE supports building
applications with Java/XML and the Android SDK,
applications with C/C++ and the Android NDK as well as pure
Java console applications. AIDE is compatible with Eclipse
projects. Developers can copy the sourcecode to their devices
and open the Eclipse project in AIDE to start coding.

C4droid [3] is a C/C++ IDE for Android devices. The
application requires the compiler to be installed on the device.
C4droid editor has the features of syntax highlighting, tabs,
code completion, code formatting, file association and
undo/redo. C4droid also provides a Debugger with breakpoints
and watches and a makefile tool.

Bright MIDE [4] is an integrated development
environment (MIDE) for Android devices with which a
developer can create, modify and build Android applications
on your Android tablet or phone. Bright MIDE offers a rich
text editor with syntax highlighting, auto-completion,
complete file history, integrated (offline available) SDK
documentation and more than 30 hot key functions of the
Eclipse IDE. The editor allows quick navigation with file tabs
and location history, fast and precise text selection and text
operations like moving lines or commenting out of code.
Bright MIDE can also work with many different projects in
parallel.

Sand [5] is another IDE for Java in Android platform. Sand
has a Java editor with keywords highlighting for Java,
showing line number, undo/redo feature, and automatically
close are all supported. Sand has a full-featured Java compiler
and can run Java programs. Output and input are both
supported by the console of Sand.

Existing research on auto-generation of Java code
concentrates on generating Java class templates or bytecode
from various UML diagrams. This includes generating Java
executables from class diagrams and state diagrams (e.g., [6]–

[8]), approaches for generating Java executables from class
diagrams, sequence diagrams, and activity diagrams (e.g., [9],
[10]), or approaches that produces Java code from formal
specifications (e.g., [11]). However, all these approaches are
designed to run on computers and are partially implemented.
While generating Java code (whether sourcecode or bytecode)
have many potentials including cost reduction and accuracy,
the road is still long to reach a system that can be reliable and
efficient.

III. APPLICATION DESIGN AND
IMPLEMENTATION

We followed the Incremental Methodology in developing
CodeRoid [12]. We choose this approach due to it’s
features that are suitable to our application. Mainly, it
ggenerates a working software early during the software
life cycle, easier to test and debug during a smaller
iteration, and easier to manage risks [12]. Figure 1 shows
the package diagram for CodeRoid. The framework
consists of the following components:

 Codroid Sketcher. A Singleton that starts the main
activity of the framework.

 Validation. The component provides the necessary
classes for validating the input data.

 Sketcher Exception: The component provides
exception classes for handling different types of
runtime errors.

 GUI. Contains the classes necessary for creating the
GUI.

 Entities. the package that works as the structure of the
files which is workspace, projects and packages.

 Our design and implementation of CodeRoid achieves the
following attributes:

 Reliability. Control flows in CodeRoid as consistent
wizard that give developers the ability to perform their
work with minimum failures. A wizard is a user
interface type that presents a user with a sequence of
dialog boxes that lead the user through a series of
well-defined steps to easily perform complex tasks.
When a failure occurs, CodeRoid recovers quickly and
resumes work from the failure point.

 Usability. CodeRoid is a well structured wizard which
is easy to learn and master. Using the framework does
not require any classroom training. CodeRoid has a
consistent engaging interfaces to explore the project,
packages and files. In the same way, developers can
easily generate and modify the code just by pressing a
button. CodeRoid is provided with informative help
messages to further increase usability.

74

Proc. of the Second Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-044-6 doi: 10.15224/ 978-1-63248-044-6-27

 Extensibility. CodeRoid is built as a framework that
allows adding plug-ins for various future requirements
and functionalities.

 Robustness. CodeRoid generates code following
instructions given by the developers; these instructions
protect the developers from making a syntactic
mistake in the programming language syntax.

 In the designing of the Graphical User Interface (GUI), we
followed the following design principles:

 1) Strive for cconsistency. The design of all the interface
components used in prompts, menus, and help screens; and
consistent commands had been employed throughout the
framework.

Figure 1. Package Diagram of CodeRoid

2) Enable the use of Short Cuts. We reduced the number of
interactions to increase the pace of interaction.
Abbreviations functioning keys and hidden commands are
very helpful even to an expert user.

3) Offer informative feedback. Every action performed by
the user is handled with system feedback. For frequent
actions, the response can be modest. For infrequent actions,
the response is handled more substantially. For example,
when the developer creates a class the response would be
shown as the last modification in the Code Logger, since
creating a class is a frequent action. When the developer
types an invalid name, which is an infrequent action, an
informative notification message is displayed.

 4) Offer ssimple eerror handling. CodeRoid is designed in
away that minimizes developers incorrect usage. However,
incorrect interactions cannot be fully eliminated. For these
situations, the framework detects the errors and offers
simple handling for the errors in a comprehensible
mechanisms.

5) Permit easy reversal of actions. developers can simply
undo or cancel any action before committing to this action.

 The following tools were used to implement CodeRoid:

 • Microsoft Visio 2013 [13], for preparing the design
documents. We used UML [14] to describe the system
architecture.

 • Eclipse Indigo [15] with android plug-in.

 • Adobe Photoshop CS5 [16], for designing icons and
images.

IV. DEMONSTRATION
In this section, we demonstrate how CodeRoid can be used

to develop Java programs. Figure 2 shows the first screen
displayed when a developer starts CodeRoid. A developer can
choose either between opening an existing project and creating
a new one. Figure 3 shows the screen displayed by CodeRoid
when the developer chooses to create a new project. The
developer can choose which package (i.e., subsystem) he/she
want to create. CodeRoid allows a developer to create a
software incrementally by having the option of creating
subsystem gradually. Developers can choose names according
to Java naming conventions.

Figure 2. Welcome Window of CodeRoid

Figure 3. Creation of Projects and Subsystems

Figure 4 shows the main screen of CodeRoid. The panel on
the right provides tools such as edit, save, delete, or refresh for
a chosen component. In the bottom of the window, the
developer can pick up one of the available components. A
developer can choose to define one of the structure
components (i.e., A class, an interface, or a package), or to
define a variable with a type. A developer can choose from
primitive data types, or class types available in the Java
library. A developer can also import class libraries when
needed for the project which will be added to the available
types in the bottom panel. CodeRoid allows developers to nest

75

Proc. of the Second Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-044-6 doi: 10.15224/ 978-1-63248-044-6-27

package (i.e., defining a package inside another package). In
Figure 5, we show the window that gets displayed when the
developer chooses to create a new package.

Figure 4. CodeRoid Main Screen

Figure 5. Create New Package Window

In Figure 6, we show how a developer can create a class using
CodeRoid. Note that the developer only need to type-in one
field, which is the field used for entering the class name. For
other options (accessibility, modifiers), the developer only
needs to select the required option. Developers can also
specify the superclass using a drop-down list, and in which
subsystem the class should be created. The list in the bottom
of the window shows the interfaces the class implements,
which can specified by clicking the drop-down list above it.
Similar to the creation of classes, a developer can create an
interface as shown in Figure 7. The developer types the
interface name, and specifies the package where the interface
belongs and the interfaces implemented by the new created
interface. If the developed chooses a name for the interface
similar to an existing one, an error message gets displayed to
indicate that .

After a class or interface is created, a developer can start
adding components to each of them. Figure 8 shows how a
developer can add a method to a class. The developer types in
the method name and selects the required method modifiers
and accessibility options. The developer proceeds by choosing
the method return type and parameters. To add a parameter,
the developer types-in the parameter name and selects the type
from a drop-down list. A list in the bottom of the window
shows the methods parameter added so far. The developer can
chose a parameter from the list and delete it (if needed).

Figure 6. Create New Class Window

Figure 7. Create New Interface Window

CodeRoid also allows the developer to change the order of the
parameters by moving a parameter up and down in the list.
Constructors can be created similar to methods as shown in
Figure 9 but without the return type option and without the
final and static modifiers (which are not allowed for
constructors in Java). In Figure 10, we show how developers
can define and add instance variables to a class using
CodeRoid. The developers can specify the accessibility
options and modifiers, the instance variable type, and the
variable name. Note that the drop-down list for the types
contain the primitive data types, types defined in java.lang,
and any user defined types specified in the project classpath.

76

Proc. of the Second Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-044-6 doi: 10.15224/ 978-1-63248-044-6-27

Figure 8. Create New Method Window

V. CONCLUSIONS AND FUTURE
WORK

 The revolution of mobile devices opened perspectives for

different types of application. In this paper, we presented an

extensible and maintainable framework that allows developers

to use their smartphones or tablets to develop Java programs.

We developed CodeRoid with Android and we set it to run on

devices with different screen sizes. The framework currently

generates Java source code with minimum typing required

from the developer. We designed CodeRoid keeping in mind

the importance of having a framework that is reliable, usable,

extensible, and robust. These features are achieved by

following the design and implementation principles of OOP.

We consider CodeRoid as the first step toward developing a

visual source code generator for programming languages that

can be used on smart devices. The presented work can be

further extended in many directions including:

1) Including classes from Java API (e.g. classes List, Set,

ArrayList from collections library).

2) Including constructs for annotations.

3) Adding the option of compiling the generated Java source

files using a website. The generated bytecode can be

returned back to the device or stored on the site.

4) Developing versions of the framework that work on

different platforms (e.g., iOS for iPhones).

5) Extending the framework for other object-oriented

programming languages (e.g., C++).

Figure 9. Create New Constructor Window

Figure 10. Create New Variable Window

77

Proc. of the Second Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-044-6 doi: 10.15224/ 978-1-63248-044-6-27

Acknowledgment

This work was supported in part by the Hashemite
University under grant #2013/19 to F. Wedyan and H. Bani
Salameh.

References

[1] Spartacus Rex, Terminal IDE, https://play.google.com/store/apps/
details?id=com.spartacusrex.spartacuside&hl=en, 2014.

[2] appfour, AIDE - Android IDE - Java, C++, https://play.google.com/store/
apps/details?id=com.aide.ui&hl=en, 2014.

[3] C4droid - C/C++ compiler and IDE, https://play.google.com/store/apps/
details?id=com.n0n3m4.droidc&hl=en, 2014.

[4] Philip Heyse, Bright MIDE: Java/Android IDE, https://play.google.com/
store/apps/details?id=de.bright side.brightmidemain&hl=en, 2014.

[5] Sand IDE Pro for Java, https://play.google.com/store/apps/details?id=
com.jimmychen.app.sand.pro&hl=en, 2014.

[6] I. A. Niaz, J. Tanaka et al., “Mapping uml statecharts to java code.” in
IASTED Conf. on Software Engineering, 2004, pp. 111–116.

[7] R. Pilitowski and A. Derezinska, “Code generation and execution ˜
framework for uml 2.0 classes and state machines,” in Innovations and
Advanced Techniques in Computer and Information Sciences and
Engineering. Springer, 2007, pp. 421–427.

[8] R. Tiella, A. Villafiorita, and S. Tomasi, “Fsmc+, a tool for the generation
of java code from statecharts,” in Proceedings of the 5th international
symposium on Principles and practice of programming in Java. ACM,
2007, pp. 93–102.

[9] M. Usman and A. Nadeem, “Automatic generation of java code from uml
diagrams using ujector,” International Journal of Software Engineering
and Its Applications, vol. 3, no. 2, pp. 21–37, 2009.

[10] A. G. Parada, E. Siegert, and L. B. de Brisolara, “Generating java code
from uml class and sequence diagrams,” in Computing System
Engineering (SBESC), 2011 Brazilian Symposium on. IEEE, 2011, pp.
99–101.

[11] S. Ramkarthik and C. Zhang, “Generating java skeletal code with design
contracts from specifications in a subset of object z,” in Computer and
Information Science, 2006 and 2006 1st IEEE/ACIS International
Workshop on Component-Based Software Engineering, Software
Architecture and Reuse. ICIS-COMSAR 2006. 5th IEEE/ACIS
International Conference on. IEEE, 2006, pp. 405–411.

[12] C. Larman and V. R. Basili, “Iterative and incremental development: A
brief history,” Computer, vol. 36, no. 6, pp. 47–56, 2003.

[13] Microsoft Visio, http://office.microsoft.com/en-001/visio/, 2013.

[14] Object Management Group, “Unified modeling language,” http://www.
uml.org/, 2014.

[15] Eclipse Indigo, https://eclipse.org/, 2014.

[16] Adobe Photoshop CS5, http://www.adobe.com/products/photoshop.html,
2014.

