

31

Proc. of the Second Intl. Conf. on Advances in Mechanical and Automation Engineering - MAE 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-045-3 doi: 10.15224/ 978-1-63248-045-3-43

A Framework for simulation-driven engineering

design
 [Yoel TENNE]

Abstract— The modern engineering design process often

employs computer simulations to evaluate candidate designs.

This setup transforms the design process into an optimization

problem which involves a computationally-expensive black-box

function, namely, which lacks an analytic expression and where

each function evaluation requires large computational

resources. An additional challenge in such settings is that

simulation runs may consistently fail for some specific

candidate designs, but with the reason for failure being

unknown. To effectively handle such challenging problems this

paper proposes an engineering optimization framework which

incorporates a classifier whose goal is to predict if a candidate

design is likely to result in a failed simulation run. This

prediction is then used to dynamically divert the optimization

search away from such designs, without sending them to the

simulation. Numerical experiments based on an airfoil

optimization problem show the effectiveness of the proposed

approach. (Abstract)

Keywords— engineering design optimization, computer

simulations, metamodels, classifiers (key words)

I. Introduction
The modern engineering design process often uses

computer simulations to evaluate candidate designs. This is
done to enhance the design process, for example, to reduce
its duration or cost. Such simulations, which must be
properly validated with laboratory experiments, effectively
act as an objective function which assigns a merit value to a
candidate design. To this end, this transforms the design
process into an optimization problem where candidate
designs are represented as vectors of design variables, and
the goal is to find a design with the best objective value [1].
Therefore in such settings a candidate design and a vector of
design variables are equivalent, and are used
interchangeably in this paper text. While computer
simulations have numerous merits, they also introduce
several challenges into the design process: i) each simulation
run is computationally-expensive, namely, it requires large
computational resources and hence only a small number of
simulation runs can be made, ii) there is no analytic
expression which defines how candidate designs are mapped
to their merit value, which effectively renders the simulation
as a black-box function , and iii) the latter black-box
function can have a complicated landscape with multiple
local optima, an aspect which further exacerbates the
optimization difficulty.

In these settings classical optimization techniques may
perform poorly, and this has motivated the development of
new and dedicated approaches for such simulation-driven
engineering problems [1].

Yoel Tenne(Author)

Ariel University

Israel

An established framework is that of using metamodels,
also termed in the literature as surrogates or response
surfaces, whose goal is to approximate the computationally
expensive function (namely, the simulation) while requiring
neligible computational resources per evaluation. This way,
approximate objective values can be obtained economically,
and more designs can be examined during the process.

However, computer simulations introduce another
challenge, namely some simulation runs can consistently fail
for some specific candidate designs, but with the cause of
failure being unknown [3]. In this paper such designs are
termed as simulation-infeasible, while those for which the
simulation completes successfully are termed as simulation-
feasible. The difficulty arising is that simulation-infeasible
designs can consume a significant portion of the available
optimization budget but without assisting the search to
progress, thereby leading to search stagnation and to a poor
final result.

In these settings classical design optimization
frameworks can struggle, and therefore this paper proposes a
framework which leverages on two specialized features: a) it
uses multiple types of metamodels concurrently to benefit
from varying approximations, and aggregates their
individual predictions into a single one, and b) it
incorporates into the optimization process a classifier,
adpoted from the domain of computational intelligence, to
predict if a candidate design is expected to be simulation-
infeasible. If so, the search is diverted towards designs
predicted to be simulation-feasible, without sending the
design to the simulation. Numerical experiments based on
an engineering problem of airfoil shape optimization and
benchmarkings against two competing frameworks from the
literature show the effectiveness of the proposed framework.
The remainder of this paper is organized as follows: Section
2 provides the general background and literature survey,
Section 3 describes the proposed framework, and Section 4
presents the numerical experiments and their analysis.
Lastly, section 5 concludes this paper.

II. Background
As mentioned in Section 1, two main components of the

proposed framework are the metamodels and the classifier.
Numerous types of metamodels have been proposed, for
example radial basis functions (RBF) and Kriging from
geostatistics, artificial neural networks from the domain of
computational intelligence, and polynomial approximations
from applied mathematics [1]. However the optimal type of
metamodel is problem-dependant, and it is often unknown
prior to the optimization process which type is the most
suitable. One approach to address this is by using multiple
types of metamodels concurrently, either by selecting the
most suitable metamodel dynamically during the search [2],
or by combining their predictions into a single one, a
scenario which is often termed in the literature as an
ensemble [12].

32

Proc. of the Second Intl. Conf. on Advances in Mechanical and Automation Engineering - MAE 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-045-3 doi: 10.15224/ 978-1-63248-045-3-43

Another challenge is that the computer simulation may
consistently fail for some candidate designs. Such
simulation-infeasible designs have been reported in the
literature, for example in references [2,4,5,6,14]. Given their
undesirable impact on the search, several techniques have
been proposed to handle them. In reference [5], the authors
explored the use of a classifier to discard simulation-
infeasible vectors, but did not consider the use of
metamodels and the impact of their approach on the latter.
Reference [4] proposed an approach which severely
penalized simulation infeasible vectors and then
incorporated them into the metamodel. Alternatively, in
reference [6] the authors proposed to completely discard
simulation infeasible vectors from the training set of the
metamodel. However, within the domain of metamodel-
assisted optimization such approaches suffer from several
shortcomings: a) assigning simulation infeasible vectors a
penalized objective value and then incorporating them using
them to train a metamodel can severely deform the
landscape of the resultant metamodel, while b) excluding
such vectors altogether discards information which may
could be used to improve the optimization process. As an
example, Figure 1 compares two Kriging metamodels of the
Rosenbrock function: (a) shows a metamodel trained by
using 30 regular vectors, while (b) shows the resultant
metamodel when the latter sample was augmented with 20
vectors which were assigned a penalized objective value,
taken as the worst objective value from the baseline sample.
The resultant metamodel landscape has been severely
deformed and contains many false optima, which further
complicates the task of locating an optimum of the true
objective function.

Figure 1: The impact of adding penalized vectors to the
metamodel

Such issues have motivated the development of
alternative approaches to handle simulation-infeasible

vectors. For example, in reference [3] the authors proposed a
dual metamodel approach, where one interpolated the
objective function and the other interpolated the penalty
value between simulation-feasible and -infeasible vectors.
Other studies have explored the use of classifiers for
constrained non-linear programming, but not focusing on
simulation-infeasible vectors [7]. Further exploring the use
of classifiers, reference [3] presented preliminary results
with a baseline algorithm involving a single metamodel.

III. Proposed framework
To address the shortcoming

discussed in Sections 1 and 2,
this paper proposes an
enhanced framework. The proposed framework begins by
generating an initial sample of vectors with the Latin

Hypercube sampling method [3]. The latter is used as it
provides a space-filling sample which improves the
accuracy of the resultant metamodels. The vectors generated
are then evaluated with the computer simulation to obtain
their corresponding objective value.

In the next step, the framework trains a set of
metamodels,

where the number of metamodels mN and their types are

a-priori prescribed by the user. It is emphasized that there is
no restriction on the type or number metamodels which can
be prescribed. An example of such prescribed settings by the
user would be the set Kriging,
RBF, and a neural network,

3=N m . which defines

Each metamodel is
trained by using all the simulator-feasible vectors which
have been evaluated. To benefit from the modelling
capabilities of different metamodels types, these individual
predictions are aggregated into a single one, termed in the
literature as an ensemble prediction [12]. This is achieved by
assigning each metamodel an ensemble weight

where ie is the root mean square prediction error of the

ith metamodel. It serves as an indicator for the metamodel
accuracy, and is obtained by taking all the feasible vectors
evaluated, splitting them into a training set and testing set,
training a metamodel based on the former and testing its
prediction on the latter. This way, the above formulation
gives a larger influence to metamodels which appear to be
more accurate and vice-versa. Once all ensemble weights
have been calculated, the ensemble prediction is given by

Following this step, the proposed framework trains a

classifier c(x) , whose goal is to predict if a candidate
vector is simulator-feasible or not. Mathematically, given a

set of vectors which have been assigned to sn distinct sets

sj n=j,S 1... , a classifier maps a new vector into one of

these sets, namely:

In this paper the well-established nearest-neighbour

classifier was used [1], which maps the vector x to the set

to which its distance is the smallest:

 5 _: jkk

n Sx,dmin=Sx,d,SRxxc

 11... mi N=,ixm

 2
1

1

i

i
i

e

e
=w

 4 : j

n SRxc

 3 ˆ xmw=xm ii

33

Proc. of the Second Intl. Conf. on Advances in Mechanical and Automation Engineering - MAE 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-045-3 doi: 10.15224/ 978-1-63248-045-3-43

After training the classifier the framework performs an
optimization search where it seeks the optimum of the

ensemble prediction xm̂ . However, the search is

performed by using the modified objective function

where p is a penalized objective value, taken to be the mean
of the objective values in the initial sample. This way the
optimization algorithm receives the ensemble prediction if
the candidate vector x is classified as simulation-feasible.
Otherwise, the optimizer receives the penalized value, which
in turn diverts the search away from the infeasible vector
and avoids sending it for evaluation with the simulation. The
optimizer used is the real-coded evolutionary algorithm of
Chipperfield [8], as it can detect good solutions even for
challenging nonconvex functions.

Since the prediction of the individual metamodels, and
hence of the ensemble, deviates from the true expensive
black-box function it is necessary to safeguard the
optimization search to ensure convergence to an optimum of
the true objective function, and not to a false optimum
artificially created by the metamodels. To achieve this, the
optimization search is performed within a trust-region
approach, as it ensures an asymptotic convergence to a true
optimum [13]. Accordingly, the EA searches for an
optimum of the ensemble in the trust-region, which is the

region centred at the current best solution bx and of radius

r, where r is dynamically updated during the search as
explained below.

After the EA search completes it returns a vector *x ,

namely the best solution found in the trust-region, and the
latter is then evaluated with true expensive function. Based
on the observed function value the following trust-region
updates occur (assuming a minimization problem):

if bxf<xf *
: The optimization step succeeded , which

implies that the ensemble prediction is sufficiently accurate.
The trust-region radius is doubled, and is centred around the
new best solution.

if bxfxf *
and the number of vectors in the trust-

region is deemed as too small: the optimization step failed,
but this may be due to the ensemble prediction being
inaccurate. In this case, another vector is sampled in the trust
region to improve the prediction accuracy.

if bxfxf *
and the number of vectors in the trust-

region is deemed as sufficient: the optimization step failed,
and the ensemble is considered to be sufficiently accurate.
Therefore, the trust-region radius is halved.

After these steps the entire process repeats, until the
prescribed limit of simulation runs is reached. To conclude
this section, Algorithm 1 gives the workflow of the proposed
framework.

It is emphasized that while in this study the proposed
framework used three types of metamodels and one type of

classifier, any other number or variants of the latter two can
be used.

generate an initial sample of vectors and evaluate them with

the true objective function;

repeat

 train metamodels with simulation-feasible vectors;

 calculate the ensemble weights;

 train a classifier using all the vectors;

 perform a trust-region step;

 update the trust region based on the observed value;

until limit of simulation runs is reached;

Algorithm 1: The workflow of the proposed framework

IV. Performance analysis
To evaluate its effectiveness, the proposed framework was
applied to an engineering problem of airfoil shape
optimization. The problem is a suitable test case as it is both
representative of real-world expensive black-box
optimization problems and it contains simulation-infeasible
vectors, as explained below. In this problem the goal is to
find an airfoil shape which maximizes the ratio of lift to
drag at a specified altitude and speed. Also, to ensure
structural integrity, the minimum airfoil thickness (t)
between 0.2 to 0.8 of the airfoil chord must be equal to or

larger than a critical value 0.1* =t . Accordingly, the

objective function used was

where lc is the lift coefficient, dc is the drag coefficient,

and tp is a penalty for violating the minimum thickness

constraint, and was defined as

Candidate airfoils were represented with the Hicks-Henne
parameterization [9] which uses a baseline profile and adds
to it several shape functions

 6
otherwise

SF as classified _is__ ˆ

p

xcifxm
=xm

),7(t

d

l p+
c

c
=f

)8(

e0_otherwis

 if *
*

 t<t

c

c

t

t

=p
d

l

t

)9(...1 ,

1/log

log0.5

sin h=i
+hi

πx=xbi

34

Proc. of the Second Intl. Conf. on Advances in Mechanical and Automation Engineering - MAE 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-045-3 doi: 10.15224/ 978-1-63248-045-3-43

where h is user-prescribed. The resultant lower and upper
profiles, respectively, are then given by

where by is the baseline airfoil profile, which was taken in

this study to be the NACA0012 symmetric airfoil, and

 0,1iα are weights to be determined. In this study

10=h functions were used for the upper and lower airfoil

curves, which resulted in a total of 20 design variables,

namely, the weights iα . The lift and drag coefficients of

candidate airfoils were obtained by using XFoil–a
computational fluid dynamics simulation for analysis of
subsonic airfoils [10]. Each airfoil evaluation required up to
30 seconds on a desktop computer. Figure 2 gives the
formulation of the airfoil problem.

Figu
re 2:
For

mula
tion
of
the

airfo
il

prob
lem
and
the

Hick
-

Hen
ne

para
mete

rization

As mentioned above, the airfoil optimization problem is a
suitable test case as it contains simulation-infeasible vectors.
The prevalence of such vectors mainly depends on the angle
of attack (AOA), which is the angle between the airfoil
chord line and the velocity, and the flight condition such as
speed and altitude. To illustrate the effect of the AOA, 30
different airfoils were evaluated at identical flight
conditions, except for the AOA which was increased from

o0 to
o40 . Figure 3 shows the results from which it

follows that increasing the angle of attack resulted in more
simulation failures. Accordingly, in the numerical tests the

settings
ooo 403020AOA ,,= were used, to ensure many

simulation failures would occur during the benchmarking
tests. Additionally, the flight condition were fixed at a Mach

number of Ma=0.775 (that is, 77.5% of the speed of sound)
and an altitude of 32 Kft.

For a thorough evaluation, the proposed framework was
compared to two alternative approaches from the literature:

 EA-PS: The evolutionary algorithm with periodic
sampling of Ratle [11], which uses a single Kriging
metamodel.

 EI-CMAES: A framework which combines the
Expected Improvement approach [4] with a
covariance matrix adaption evolutionary strategies
optimizer.

F
i
g
u
r
e

3
:

T
h
e

percentage of simulation failures at different angle
of attack values.

In all tests the limit was 200 simulation runs, and the
initial sample size was fixed at 20 vectors. To support a
valid statistical analysis, 30 runs were repeated with each
framework in each AOA setting, and Table 1 gives the
resultant test statistics of mean and median.

Table 1: Statistics for the objective values

AOA

[degrees]

Statistic Proposed

framework

EA-PS EI-

CMAES

20

Mean 3.688e-01 4.284e-01 4.977e-01

Median 3.687e-01 4.203e-01 4.220e-01

30

Mean 7.590e-01 9.647e-01 7.680e-01

Median 7.422e-01 1.026e+00 7.426e-01

40

Mean 8.891e-01 1.107e+00 9.092e-01

Median 8.897e-01 1.105e+00 9.070e-01

The best statistics in each test case are shown in bold.

Results show that the proposed framework consistently
outperformed the other two across all test cases, as evident
from the mean and median statistics. In particular, the
proposed framework maintained its advantage even as the
number of failed evaluations increased (higher values of the
angle of attack), which shows that it performed well across
varied scenarios. From analysis of these results it follows:

 Using an ensemble of metamodels improves the
accuracy of the black-box function approximation. This, in
turn, improves the effectiveness of the optimization search,
when compared to using a single type of metamodel.

)10(xbα+y=y iib

35

Proc. of the Second Intl. Conf. on Advances in Mechanical and Automation Engineering - MAE 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-045-3 doi: 10.15224/ 978-1-63248-045-3-43

 In the presence of simulation-infeasible vectors
incorporating a classifier into the optimization search can
further improve the search by reducing the number of failed
simulation runs.

V. Conclusion
Computer simulations are often used in the engineering

design process to evaluate candidate designs. In these

settings the design process is cast as an optimization

problem which involves a computationally expensive black-

box function. Furthermore, some simulation runs

consistently fail for specific designs, but the reason for

failure being unknown. In these challenging settings

classical optimization frameworks may perform poorly, and

therefore this paper has proposed an optimization

framework which: a) uses multiple metamodels concurrently

and aggregates their prediction into a single one, and b)

incorporates a classifier into the optimization search to

predict if a candidate design is likely to crash the simulation.

The latter prediction is then used to bias the search away

from such designs, without sending them for evaluation with

the simulation. Furthermore, to ensure convergence to an

optimum of the expensive black-box function, the proposed

framework also operates within a trust-region approach.

The proposed framework was benchmarked against two

competing frameworks from the literature based on an

airfoil shape optimization problem. Test results show that

the proposed framework consistently outperformed the other

frameworks, which thereby highlights the effectiveness of

the proposed approach.

References

[1] Y. Tenne and C. K. Goh, eds., Computational

Intelligence in Expensive Optimization Problems, vol. 2 of

Evolutionary Learning and Optimization. Berlin: Springer,

2010.

[2] Y. Tenne and S. W. Armfield, “A framework for

memetic optimization using variable global and local

surrogate models,” Journal of Soft Computing, vol. 13, no.

8, pp. 781–793, 2009.

[3] Y. Tenne, K. Izui, and S. Nishiwaki, “A computational

intelligence algorithm for expensive engineering

optimization problems,” Engineering Applications of

Artificial Intelligence, vol. 25, no. 5, pp. 1009–1021, 2012.

[4] D. Büche, N. N. Schraudolph, and P. Koumoutsakos,

“Accelerating evolutionary algorithms with Gaussian

process fitness function models,” IEEE Transactions on

Systems, Man, and Cybernetics–Part C, vol. 35, no. 2, pp.

183–194, 2005.

[5] K. Rasheed, H. Hirsh, and A. Gelsey, “A genetic

algorithm for continuous design space search,” Artificial

Intelligence in Engineering, vol. 11, pp. 295–305, 1997.

[6] M. T. M. Emmerich, A. Giotis, M. Özedmir, T. Bäck,

and K. C. Giannakoglou, “Metamodel-assisted evolution

strategies,” in The 7th International Conference

on Parallel Problem Solving from Nature–PPSN VII (J. J.

Merelo Guervós, ed.), no. 2439 in Lecture Notes in

Computer Science, (Berlin), pp. 361–370, Springer, 2002.

[7] S. Handoko, C. K. Kwoh, and Y.-S. Ong, “Using

classification for constrained memetic algorithm: A new

paradigm,” in Proceedings of the 2008 IEEE International

Conference on Systems, Man, and Cybernetics, pp. 547–

552, Elsevier, 2008.

[8] A. Chipperfield, P. Fleming, H. Pohlheim, and C.

Fonseca, Genetic Algorithm TOOLBOX For Use with

MATLAB, Version 1.2. Department of Automatic Control

and Systems Engineering, University of Sheffield, Sheffield,

1994.

[9] R. M. Hicks and P. A. Henne, “Wing design by

numerical optimization,” Journal of Aircraft, vol. 15, no. 7,

pp. 407–412, 1978.

[10] M. Drela and H. Youngren, XFOIL 6.9 User Primer.

Department of Aeronautics and Astronautics, Massachusetts

Institute of Technology, Cambridge, MA, 2001.

[11] A. Ratle, “Optimal sampling strategies for learning a

fitness model,” in The 1999 IEEE Congress on Evolutionary

Computation–CEC 1999, (Piscataway, New Jersey), pp.

2078–2085, IEEE, 1999.

[12] R. G. and Regis and C. A. Shoemaker, “ORBIT:

Optimization by radial basis function interpolation in trust-

regions,” vol. 30, no. 6, pp. 3197–3219, 2008.

[13] A. R. Conn, K. Scheinberg, and L. N. Vicente,

Introduction to Derivative-Free Optimization (MPS-Siam

Series on Optimization. Philadelphia, Pennsylvania:

SIAM, 2009.
[14] J. D. Martin and T. W. Simpson, “Use of Kriging

models

to approximate deterministic computer models,” AIAA

Journal, vol. 43, no. 4, pp. 853–863, 2005 .

