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A Framework for simulation-driven engineering 

design 
 [ Yoel TENNE] 

 
Abstract— The modern engineering design process often 

employs computer simulations to evaluate candidate designs. 

This setup transforms the design process into an optimization 

problem which involves a computationally-expensive black-box 

function, namely, which lacks an analytic expression and where 

each function evaluation requires large computational 

resources. An additional challenge in such settings is that 

simulation runs may consistently fail for some specific 

candidate designs, but with the reason for failure being 

unknown. To effectively handle such challenging problems this 

paper proposes an engineering optimization framework which 

incorporates a classifier whose goal is to predict if a candidate 

design is likely to result in a failed simulation run. This 

prediction is then used to dynamically divert the optimization 

search away from such designs, without sending them to the 

simulation.  Numerical experiments based on an airfoil 

optimization problem show the effectiveness of the proposed 

approach. (Abstract) 

Keywords— engineering design optimization, computer 

simulations, metamodels, classifiers (key words) 

I.  Introduction 
The modern engineering design process often uses 

computer simulations to evaluate candidate designs. This is 
done to enhance the design process, for example, to reduce 
its duration or cost. Such simulations, which must be 
properly validated with laboratory experiments, effectively 
act as an objective function which assigns a merit value to a 
candidate design. To this end, this transforms the design 
process into an optimization problem where candidate 
designs are represented as vectors of design variables, and 
the goal is to find a design with the best objective value [1]. 
Therefore in such settings a candidate design and a vector of 
design variables are equivalent, and are used 
interchangeably in this paper text. While computer 
simulations have numerous merits, they also introduce 
several challenges into the design process: i) each simulation 
run is  computationally-expensive, namely, it requires large 
computational resources and hence only a small number of 
simulation runs can be made, ii) there is no analytic 
expression which defines how candidate designs are mapped 
to their merit value, which effectively renders the simulation 
as a black-box function , and iii) the latter black-box 
function can have a complicated landscape with multiple 
local optima, an aspect which further exacerbates the 
optimization difficulty. 

In these settings classical optimization techniques may 
perform poorly, and this has motivated the development of 
new and dedicated approaches for such simulation-driven 
engineering problems [1]. 
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An established framework is that of using metamodels, 
also termed in the literature as surrogates or response 
surfaces, whose goal is to approximate the computationally 
expensive function (namely, the simulation) while requiring 
neligible computational resources per evaluation. This way, 
approximate objective values can be obtained economically, 
and more designs can be examined during the process.  

However, computer simulations introduce another 
challenge, namely some simulation runs can consistently fail 
for some specific candidate designs, but with the cause of 
failure being unknown [3]. In this paper such designs are 
termed as simulation-infeasible, while those for which the 
simulation completes successfully are termed as simulation-
feasible. The difficulty arising is that simulation-infeasible 
designs can consume a significant portion of the available 
optimization budget but without assisting the search to 
progress, thereby leading to search stagnation and to a poor 
final result. 

In these settings classical design optimization 
frameworks can struggle, and therefore this paper proposes a 
framework which leverages on two specialized features: a) it 
uses multiple types of metamodels concurrently to benefit 
from varying approximations, and aggregates their 
individual predictions into a single one, and b) it 
incorporates into the optimization process a classifier, 
adpoted from the domain of computational intelligence, to 
predict if a candidate design is expected to be simulation-
infeasible. If so, the search is diverted towards designs 
predicted to be simulation-feasible, without sending the 
design to the simulation. Numerical experiments based on 
an engineering problem of airfoil shape optimization and 
benchmarkings against two competing frameworks from the 
literature show the effectiveness of the proposed framework. 
The remainder of this paper is organized as follows: Section 
2 provides the general background and literature survey, 
Section 3 describes the proposed framework, and Section 4 
presents the numerical experiments and their analysis. 
Lastly, section 5 concludes this paper. 

II. Background 
As mentioned in Section 1, two main components of the 

proposed framework are the metamodels and the classifier. 
Numerous types of metamodels have been proposed, for 
example radial basis functions (RBF) and Kriging from 
geostatistics, artificial neural networks from the domain of 
computational intelligence, and polynomial approximations 
from applied mathematics [1]. However the optimal type of 
metamodel is problem-dependant, and it is often unknown 
prior to the optimization process which type is the most 
suitable. One approach to address this is by using multiple 
types of metamodels concurrently, either by selecting the 
most suitable metamodel dynamically during the search [2], 
or by combining their predictions into a single one, a 
scenario which is often termed in the literature as an 
ensemble [12]. 
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Another challenge is that  the computer simulation may 
consistently fail for some candidate designs. Such 
simulation-infeasible designs have been reported in the 
literature, for example in references [2,4,5,6,14]. Given their  
undesirable impact on the search, several techniques have 
been proposed to handle them. In reference [5], the authors 
explored the use of a classifier to discard simulation-
infeasible vectors, but did not consider the use of 
metamodels and the impact of their approach on the latter. 
Reference [4] proposed an approach which severely 
penalized simulation infeasible vectors and then 
incorporated them into the metamodel. Alternatively, in 
reference [6] the authors proposed to completely discard 
simulation infeasible vectors from the training set of the 
metamodel. However, within the domain of metamodel-
assisted optimization such approaches suffer from several 
shortcomings: a) assigning simulation infeasible vectors a 
penalized objective value and then incorporating them using 
them to train a metamodel can severely deform the  
landscape of the resultant metamodel, while b) excluding 
such vectors altogether discards information which may 
could be used to improve the optimization process. As an 
example, Figure 1 compares two Kriging metamodels of the 
Rosenbrock function: (a) shows a metamodel trained by 
using 30 regular vectors, while (b) shows the resultant 
metamodel when the latter sample was augmented with 20 
vectors which were assigned a penalized objective value, 
taken as the worst objective value from the baseline sample. 
The resultant metamodel landscape has been severely 
deformed and contains many false optima, which further 
complicates the task of locating an optimum of the true 
objective function. 

Figure 1: The impact of adding penalized vectors to the 
metamodel 

Such issues have motivated the development of 
alternative approaches to handle simulation-infeasible 

vectors. For example, in reference [3] the authors proposed a 
dual metamodel approach, where one interpolated the 
objective function and  the other interpolated the penalty 
value between simulation-feasible and -infeasible vectors. 
Other studies have explored the use of classifiers for 
constrained non-linear programming, but not focusing on 
simulation-infeasible vectors [7]. Further exploring the  use 
of classifiers, reference [3] presented preliminary results  
with a baseline algorithm involving a single metamodel. 

III. Proposed framework 
To address the shortcoming 

discussed in Sections 1 and 2, 
this paper proposes an 
enhanced framework. The proposed framework begins by 
generating an initial sample of vectors with the Latin 

Hypercube sampling method [3]. The latter is used as it 
provides a space-filling sample which improves the 
accuracy of the resultant metamodels. The vectors generated 
are then evaluated with the computer simulation to obtain 
their corresponding objective value. 

In the next step, the framework trains a set of 
metamodels,  

 

 

where the number of metamodels  mN  and their types are  

a-priori prescribed by the user. It is emphasized that there is 
no restriction on the type or number metamodels which can 
be prescribed. An example of such prescribed settings by the 
user would be the set Kriging, 
RBF, and a neural network, 

3=N m .  which defines 

Each metamodel is 
trained by using all the simulator-feasible vectors which 
have been  evaluated. To benefit from the modelling 
capabilities of different metamodels types, these individual 
predictions are aggregated into a single one, termed in the 
literature as an ensemble prediction [12]. This is achieved by 
assigning each metamodel an ensemble weight  

 

 

 

 

where ie  is the root mean square prediction error of the 

ith metamodel. It serves as an indicator for the metamodel 
accuracy, and is obtained by taking all the feasible vectors 
evaluated, splitting them into a training set and testing set, 
training a metamodel based on the former and testing its 
prediction on the latter. This way, the above formulation 
gives a larger influence to metamodels which appear to be 
more accurate and vice-versa. Once all ensemble weights 
have been calculated, the ensemble prediction is given by 

 

 

Following this step, the proposed framework trains a 

classifier c(x) , whose goal is to predict if a candidate 
vector is simulator-feasible or not. Mathematically, given a 

set of vectors which have been assigned to sn distinct sets 

sj n=j,S 1... , a classifier maps a new vector into one of 

these sets, namely: 

 

 

In this paper the well-established nearest-neighbour 

classifier was used [1], which maps the vector x  to the set 

to which its distance is the smallest: 
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After training the classifier the framework performs an 
optimization search where it seeks the optimum of the 

ensemble prediction  xm̂ . However, the search is 

performed by using the modified objective function 

 

 

where p is a penalized objective value, taken to be the mean 
of the objective values in the initial sample. This way the 
optimization algorithm receives the ensemble prediction if  
the candidate vector x is classified as simulation-feasible. 
Otherwise, the optimizer receives the penalized value, which 
in turn diverts the search away from the infeasible vector 
and avoids sending it for evaluation with the simulation. The 
optimizer used is the real-coded evolutionary algorithm of 
Chipperfield [8], as it can detect good solutions even for 
challenging nonconvex functions.  

Since the prediction of the individual metamodels, and 
hence of the ensemble, deviates from the true expensive 
black-box function it is necessary to safeguard the 
optimization search to ensure convergence to an optimum of 
the true objective function, and not to a false optimum 
artificially created by the metamodels. To achieve this, the 
optimization search is performed within a trust-region 
approach, as it ensures an asymptotic convergence to a true 
optimum [13]. Accordingly, the EA searches for an 
optimum of the ensemble in the trust-region, which is the 

region centred at the current best solution  bx and of radius 

r, where r is dynamically updated during the search as 
explained below.   

After the EA search completes it returns a vector *x , 

namely the best solution found in the trust-region, and the 
latter is then evaluated with true expensive function. Based 
on the observed function value the following trust-region 
updates occur (assuming a minimization problem): 

if    bxf<xf *
: The optimization step succeeded , which 

implies that the ensemble prediction is sufficiently accurate. 
The trust-region radius is doubled, and is centred around the 
new best solution. 

if    bxfxf *
and the number of vectors in the trust-

region is deemed as too small: the optimization step failed, 
but this may be due to the ensemble prediction being 
inaccurate. In this case, another vector is sampled in the trust 
region to improve the prediction accuracy. 

if    bxfxf *
and the number of vectors in the trust-

region is deemed as sufficient: the optimization step failed, 
and the ensemble is considered to be sufficiently accurate. 
Therefore, the trust-region radius is halved. 

After these steps the entire process repeats, until the 
prescribed limit of simulation runs is reached. To conclude 
this section, Algorithm 1 gives the workflow of the proposed 
framework. 

It is emphasized that while in this study the proposed 
framework used three types of metamodels and one type of 

classifier, any other number or variants of the latter two can 
be used. 

 
 
 

generate an initial sample of vectors and evaluate them with 

the true objective function; 

repeat 

 train metamodels with simulation-feasible vectors; 

 calculate the ensemble weights; 

 train a classifier using all the vectors; 

 perform a trust-region step; 

 update the trust region based on the observed value; 

until limit of simulation runs is reached; 

Algorithm 1: The workflow of the proposed framework 

IV. Performance analysis 
To evaluate its effectiveness, the proposed framework was 
applied to an engineering problem of airfoil shape 
optimization. The problem is a suitable test case as it is both 
representative of real-world expensive black-box 
optimization problems and it contains simulation-infeasible 
vectors, as explained below. In this problem the goal is to 
find an airfoil shape which maximizes the ratio of lift to 
drag at a specified altitude and speed. Also, to ensure 
structural integrity, the minimum airfoil thickness (t) 
between 0.2 to 0.8 of the airfoil chord must be equal to or 

larger than a critical value 0.1* =t . Accordingly, the 

objective function used was  

 

 

 

where lc is the lift coefficient, dc is the drag coefficient, 

and tp  is a penalty for violating the minimum thickness 

constraint, and was defined as 

 

 

 

  
  
Candidate airfoils were represented with the Hicks-Henne 
parameterization [9] which uses a baseline profile and adds 
to it several shape functions 
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where h is user-prescribed. The resultant lower and upper 
profiles, respectively, are then given by 

 

 

where by is the baseline airfoil profile, which was taken in 

this study to be the NACA0012 symmetric airfoil, and 

 0,1iα are weights to be determined. In this study 

10=h functions were used for the upper and lower airfoil 

curves, which resulted in a total of 20 design variables, 

namely, the weights iα . The lift and drag coefficients of 

candidate airfoils were obtained by using XFoil–a 
computational fluid dynamics simulation for analysis of 
subsonic airfoils [10]. Each airfoil evaluation required up to 
30 seconds on a desktop computer. Figure 2 gives the 
formulation of the airfoil problem.  
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As mentioned above, the airfoil optimization problem is a 
suitable test case as it contains simulation-infeasible vectors. 
The prevalence of such vectors mainly depends on the angle 
of attack (AOA), which is the angle between the airfoil 
chord line and the velocity, and the  flight condition such as 
speed and altitude. To illustrate the effect of the AOA, 30 
different airfoils were evaluated at identical flight 
conditions, except for the AOA which was increased from 

o0  to 
o40  . Figure 3 shows the results from which it 

follows that increasing the angle of attack resulted in more 
simulation failures. Accordingly, in the numerical tests the 

settings 
ooo 403020AOA ,,= were used, to ensure many 

simulation failures would occur during the benchmarking 
tests. Additionally, the flight condition were fixed at a Mach 

number of Ma=0.775 (that is, 77.5% of the speed of sound) 
and an altitude of 32 Kft.  

For a thorough evaluation, the proposed framework was 
compared to two alternative approaches from the literature:  

 EA-PS: The evolutionary algorithm with periodic 
sampling of Ratle [11], which uses a single Kriging 
metamodel. 

 EI-CMAES: A framework which combines the 
Expected Improvement approach [4] with a 
covariance matrix adaption evolutionary strategies 
optimizer. 

F
i
g
u
r
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e
 
percentage of simulation failures at different angle 
of attack values. 

 

In all tests the limit was 200 simulation runs, and the 
initial sample size was fixed at 20 vectors. To support a 
valid statistical analysis, 30 runs were repeated with each 
framework in each AOA setting, and Table 1 gives the 
resultant test statistics of mean and median. 

 

Table 1: Statistics for the objective values 

AOA  

[degrees] 

Statistic Proposed 

framework 

EA-PS EI-

CMAES 

 

20 

Mean 3.688e-01 4.284e-01 4.977e-01 

Median 3.687e-01 4.203e-01 4.220e-01 

 

30 

Mean 7.590e-01 9.647e-01 7.680e-01 

Median 7.422e-01 1.026e+00 7.426e-01 

 

40 

Mean 8.891e-01 1.107e+00 9.092e-01 

Median 8.897e-01 1.105e+00 9.070e-01 

The best statistics in each test case are shown in bold. 

Results show that the proposed framework consistently 
outperformed the other two across all test cases, as evident 
from the mean and median statistics. In particular, the 
proposed framework maintained its advantage even as the 
number of failed evaluations increased (higher values of the 
angle of attack), which shows that it performed well across  
varied scenarios. From analysis of these results it follows: 

 Using an ensemble of metamodels improves the  
accuracy of the black-box function approximation. This, in 
turn, improves the effectiveness of the optimization search, 
when compared to using a single type of metamodel. 

  )10(xbα+y=y iib 
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 In the presence of simulation-infeasible vectors 
incorporating a classifier into the optimization search can  
further improve the search by reducing the number of failed 
simulation runs. 

V. Conclusion 
Computer simulations are often used in the engineering 

design process to evaluate candidate designs. In these 

settings the design process is cast as an optimization 

problem which involves a computationally expensive black-

box function. Furthermore, some simulation runs 

consistently fail for specific designs, but the reason for 

failure being unknown. In these challenging settings 

classical optimization frameworks may perform poorly, and 

therefore this paper has proposed an optimization 

framework which: a) uses multiple metamodels concurrently 

and aggregates their prediction into a single one, and b) 

incorporates a classifier into the optimization search to 

predict if a candidate design is likely to crash the simulation. 

The latter prediction is then used to bias the search away 

from such designs, without sending them for evaluation with 

the simulation. Furthermore, to ensure convergence to an 

optimum of the expensive black-box function, the proposed 

framework also operates within a trust-region approach.  

The proposed framework was benchmarked against two 

competing frameworks from the literature based on an 

airfoil shape optimization problem. Test results show that 

the proposed framework consistently outperformed the other 

frameworks, which thereby highlights the effectiveness of 

the proposed approach. 
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