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Abstract—The presented analysis concerns the two-degree-

of-freedom lumped parameter model, which is combined of the 

magneto-piezoelectric energy harvester and the mass-spring 

subsystem used as a dynamic magnifier. The simplified single-

degree-of-freedom energy harvester describes the tip beam 

dynamics and the voltage generated by the piezoelements. The 

equivalent mass and stiffness of the cantilevered beam, and 

also the piezoelectric properties characterize this subsystem. 

The repulsive force created by the tip magnet and another one 

mounted to the cantilever base is involved. It is assumed that 

the repulsive loading component is a nonlinear odd function of 

the cantilever tip displacement and the energy harvesting 

subsystem can be modelled as Duffing oscillator. Changing the 

distance between the magnets, monostable or bistable 

behaviour of the beam harvester can be created. The presence 

of bistability improves the harvester effectiveness and also may 

create chaotic behaviour. For characterizing an irregular 

chaotic response in this work the time histories, bifurcation 

diagrams, Poincarè maps and maximal exponents of Lyapunov 

have been constructed. 
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I.  Introduction  
Techniques based on application of distributed 

piezoelectric transducers have found a relevant role in 
vibration control of thin walled flexible structures to 
improve their operational behaviour and ability to reduce 
unwanted vibration (see e.g. [1], [2], [3], [4], [5]). In 
engineering applications such as structural health monitoring 
and environmental monitoring, practical solutions for a 
wireless power supply of electronic devices are of great 
importance. Energy harvesting is a promising technique for 
development of self-powered wireless electronics. 
Piezoelectric transducers occur quite effective to convert 
mechanical energy from usually ambient vibrations into 
electrical energy. The most popular harvesters are design as 
a cantilever with piezoceramic layers or patches bonded to 
the beam sides. The cantilever, which is mounted to a 
vibrating host structure, is subjected to excitation related to 
the base movement.  
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This type of energy harvesters is effective when they 
operate at resonance, and a shift of the excitation frequency 
causes a drastic decrease of the generated electrical power 
[6], [7]. In order to increase the harvester bandwidth and 
also improve its effectiveness a nonlinear magnetic force is 
applied to create bistable structure behaviour, where two 
equilibrium positions are present. The magnetic repulsive 
force can be produced by two permanent magnets oppositely 
polled. One of them is attached to the beam tip and the other 
is mounted to the base of the system near the beam free end. 
The contribution to energy harvesting from the higher 
vibration modes, which occur far away from the 
fundamental frequency, is usually neglected. Hence, a 
conventional beam harvester can be reduced to a single-
mode device with effective properties parameters calculated 
and introduced [8]. 

The presented analysis concerns the two-degree-of-
freedom lumped parameter model, which is combined of the 
magneto-piezoelectric energy harvester and the subsystem 
used as a dynamic magnifier to amplify the vibration of the 
harvester [9]. The dynamic magnifier consists of the mass 
and spring, and is placed between the energy converter and 
the base whose movement is assumed as a harmonic 
excitation. The simplified single-degree-of-freedom energy 
harvester describes the tip beam dynamics and the voltage 
generated by the piezoelements. The equivalent mass, 
stiffness and damping of the cantilevered beam, and also the 
piezoelectric properties characterize this subsystem. The 
repulsive force created by the tip magnet and that mounted 
to the cantilever base is involved. For relatively small 
vibrations it is reasonable to assume that the repulsive force 
is constant in magnitude and changes in direction when the 
tip magnet moves. In the considered case the repulsive 
loading component is a nonlinear odd function of the 
cantilever tip displacement and the energy harvesting 
subsystem can be modelled as Duffing oscillator [10]. 
Changing the distance between the magnets, monostable or 
bistable behaviour of the beam harvester can be created. The 
presence of bistability makes the system capable to rapidly 
switch between the two stable positions improving the 
harvester effectiveness and also may cause chaotic 
behaviour. For characterizing an irregular chaotic response 
in this work the time histories, bifurcation diagrams, 
Poincarè maps and maximal exponents of Lyapunov have 
been constructed. These descriptors are available to observe 
chaos, and to better understand it (see e.g. [11], [12], [13]). 
When a bifurcation diagram is plotted, several phenomenon 
can be observed: existence of a simple attractor with low 
period, or existence of a chaotic attractor and various 
bifurcation. All these phenomena have to be verified in the 
phase space. Nonperiodic attractors have been traced by 
solving an initial value problem. The maximum Lyapunov 
exponents have been calculated in order to characterize the 
chaotic orbits. 
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II. Model of the System 
Figure 1a gives a schematic view of the magneto-

piezoelectric beam harvester joined with the magnified 
subsystem. The dynamic magnifier consists of the mass m1 
and spring k1, and is used to amplify the vibration of the 
harvester. The nonlinear energy converter consists of a 
cantilevered beam covered by piezoelectric layers on both 
sides. To create nonlinear repulsive force two permanent 
magnets with opposite polarization are used. One of them is 
attached to the beam tip and the other is stationary mounted 
to the base of the harvesting subsystem near the cantilever 
free end. The excitation is assumed as the base vertical 
movement described by a harmonic single frequency time 
function.  

The analysis of the system chaotic behaviour is 
performed for the simplified two-degree-of-freedom model 
presented in Fig. 1b. Here, the system simplification 
concerns the beam energy harvester. The reduced energy 
harvesting subsystem consists of the equivalent mass m2, 
linear spring with equivalent stiffness k2, and the nonlinear 
spring representing the magnet force. The mass m2 account 
for the effective mass of the first flexural mode of the 
cantilever plus the magnet, and the effective stiffness k2 
relates to the beam bending stiffness calculated for the 
vertical tip displacement. On the schema the piezoelectric 
element, which is responsible for producing the voltage in 
relation to the tip beam deflection, is placed between the 
mass m1 and m2. Displacements of the mass m1 and m2 are 
indicated as x1 and x2, respectively. Considering the base 
movement u(t) the relative displacements of the lumped-
elements are defined: w1 = x1 – u and w2 = x2 – x1.  

As mentioned above the interaction between magnets 
can be reduced to the vertical component FRV and described 
as the nonlinear repulsive force acting on the mass m2 (cf 
[10]). The repulsive force is approximated as the Duffing 
equation 

 3

22 wwFRV   with  
s

FR and  32s

FR 

where FR and s is the interaction and distance between 
magnets, respectively. 

The piezoelectric element in Fig. 1 inserted between the 
masses m1 and m2 is used for calculation the voltage Vp 
generated by the converter basing on the relative 
displacement w2. For this reason a following relation can be 
used  


)(2 lWcw

V

p

p 
  

where W(l) is the first mode shape value for the bimorph 

length,  is the electromechanical coupling, cp is the 
piezoelectric layers capacitance.  

 

 

 

 

 

Figure 1.  Magneto-piezoelectric energy harvesting system with a 

dynamic magnifier: a) schematic view, b) configuration of the equivalent 

two-degree-of-freedom system 

 

The electromechanical coupling is given by the formula 
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where d31 is the piezoelectric material constant, Yp is the 
Young modulus, tp, and ts indicate the piezoelectric and 
beam substrate layer thickness, respectively, bp is the 
bimorph beam width. 

 

 

A. Equations of Motion 
The equations of motion of the system derived as 

Lagrange’s equations take the following form 

 umwkFwkwm RV


1221111 


 

 umFwkwwm RV


222212 )(   

a) 

N S 

Permanent 

magnets 

S N 

k1 

Beam with 

piezoelectric 

layers 

Base excitation 

x1 

x2 

Nonlinear spring 

representing  

the magnet force 

Piezoelectric 

elements 

Base excitation 
k1 

k2 

m1 

m2 

u(t) 

b) 



 

58 

 

Proc. of the Third Intl. Conf. Advances in Civil, Structural and Mechanical Engineering- CSM 2015 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-062-0 doi: 10.15224/ 978-1-63248-062-0-38 

 

where u(t) is the base displacement assumed as a harmonic 
function 

 tAu sin  

where A and  indicate the excitation amplitude and 
frequency, respectively. 

After transformations the equations of motion can be 
written in as follows 

 tAmwwkwkwm  sin)( 2

1

3
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The following dimensionless time and dimensionless 
parameters are introduced 
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After using (9) the equations of motion can be written in 
the dimensionless form 

  sin)1( 23

2211  cwwbaww  

  sin)1( 23
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Bars in (10) and (11) are omitted for convenience. 

III. Numerical Results 
The equations of motion in dimensionless form (7) have 

been solved numerically. Calculations have been done for 
different values of the system parameters. The calculations 
incorporated the following initial conditions: w1(0)=0, 
w2(0)=0.0001. Exemplary results the external resonances for 
displacement w1 and w2 are presented in Fig. 2. As we can 
see near the external resonances the system presents some 
interesting nonlinear phenomena.  

For characterizing of the system response are 
constructed [13]: bifurcation diagrams (where the parameter 
ω is the bifurcation parameter), Poincaré maps and 
Lyapunov exponents. Bifurcation diagrams versus 
bifurcation parameter ω for displacement w1 and 
displacement w2 are presented in Fig.3. The Lyapunov 
maximal exponents are shown in Figs 4 and 5 and the 
Poincaré maps are presented in Fig. 6.  

When a bifurcation diagram is plotted, phenomena can 
be observed: existence of a simple or chaotic attractor and 
various bifurcations. All these effects are verified in the 
phase space. Poincaré maps and maximal exponents of 
Lyapunov are available to observe chaos. 

 

 

 

 

Figure 2.  External resonances for a=1.5 b=1.5 d=100 c=0.00001 and 

for different values of parameter b: a) b=1.5 b) b=1.0 and c) b=0.5 

 

In Figs 4 and 5 we can observe positive values of 
maximal exponents of Lyapunov, and in Fig. 6 the Poincaré 
maps show the strange atractors, so in this case (ω=1.22) 
motion of the both bodies are chaotic. 
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Figure 3.  Bifurcation diagrams for a=1.5; b=1; c=0.00001; d=100 

 

 

 

Figure 4.  Exponents of Lyapunov  for w1 when a=1.5; b=1; c=0.00001; 

d=100 and ω=1.22 

 

 

Figure 5.  Exponents of Lyapunov  for w2 when a=1.5; b=1; c=0.00001; 

d=100 and ω=1.22 

 

 

 

 

Figure 6. Poincaré maps for a=1.5; b=1; c=0.00001; d=100 and ω=1.22  

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

1.00 1.10 1.20 1.30 1.40 1.50

ω

w
1

-200

-150

-100

-50

0

50

100

150

1.00 1.10 1.20 1.30 1.40 1.50

ω

w
2

-100

-80

-60

-40

-20

0

20

40

60

80

100

-150 -100 -50 0 50 100 150

w1

d
w

1
/d


-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50 100

w2

d
w

2
/d


0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800 1000

n

m
ax

.e
x
p

, 
L

y
ap

. f
o

r 
w

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 200 400 600 800 1000

n

m
a
x
.e

x
p

. 
L

y
a
p

. 
fo

r 
w

2



 

60 

 

Proc. of the Third Intl. Conf. Advances in Civil, Structural and Mechanical Engineering- CSM 2015 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-062-0 doi: 10.15224/ 978-1-63248-062-0-38 

 

 

IV. Conclusions 
Several interesting phenomena have been presented. The 

behaviour of the system near the resonance frequencies is 
very important. It has been shown that the examined system 
exhibits very rich nonlinear dynamics. Except periodic 
vibrations also chaotic vibrations have been found. The 
chaotic vibrations of the body modelled the beam harvesting 
subsystem prove the chaotic behaviour of the generated 
voltage. 
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