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Abstract—In this paper, an intrinsic parameter of camera from a 

single image is formulated. Compared to other techniques which 

use two or three orthogonal planes, parallelograms, rectangles, 

conic circles and balls, the proposed technique is easy to use and 

flexible. Calculation of the focal length using a single image is the 

main objective of this research work. A stick is employed as the 

calibration object to formulate the equations in order to compute 

the focal length. The arrangement of the calibration object to 

acquire the images adds more accuracy in computing the focal 

length of the camera. The length of the calibration object is the 

major cue in computing the focal length. A novel approach using 

polynomial regression is attempted in formulating the cubic 

polynomials based on the length of the calibration object. The 

results are tabulated and further used in formulating equation to 

compute the focal length of the camera. Experimental results are 

tabulated to show the accuracy of the proposed approach. 
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I. Introduction 
 Images are two dimensional representation of the three 
dimensional world. The drop from three dimensional world 
to a two dimensional image is a projection process in which 
there is a loss of one dimension as shown in Fig.1. The 
purpose of camera calibration is to establish the 
transformation between the object and the image space. With 
the aid of the transformation established, the object space 
information along with the other parameters of the camera 
can be inferred from image space. The camera calibration is 
identified to compute the intrinsic and extrinsic camera 
parameters. The extrinsic parameters of a camera indicate the 
position and the orientation of the camera with respect to a 
world-coordinate system. The intrinsic parameters 
characterize the inherent properties of the camera optics 
which includes the focal length, image center, the image 
scaling factor and the lens distortion coefficient.  
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A brief description of the imaging process is given: The 
perspective projection from a 3D point onto the image plane, 
and the back projection from an image pixel to 3D world 
knowing the depth of the point are related by the following 
formula: 
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(1) 

where [       ]T
 is the 2D point position in pixel coordinates, 

[         ] T 
 represent a 3D point position in world coordinates, 

A is the calibration matrix encoding the intrinsic camera 
parameters as given in equation (2) and R,T are the extrinsic 
parameters which denote the coordinate system transformations 
from 3D world coordinates to 3D camera coordinates. 
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where    = f . mx and     = f . my are the focal lengths of the 

camera in pixels, mx and my  are the scale factors relating pixels 

to the distance and f is the focal length in terms of distance, 

(         is the principal point of the image plane and   is the 

skew parameter of the camera. 
A novel method of calibrating the intrinsic parameter i.e., the 
focal length and the extrinsic parameter i.e., the position of the 
camera using polynomial regression is attempted in the 
proposed work. This fits a polynomial regression model to 
powers of a single predictor by the method of linear least 
squares. The premise of polynomial regression is that a data set 
of n paired (x, y) members: (x1, y1)…………. (xn, yn) can be 
processed using a least squares method to create a predictive 
polynomial equation of degree p: 

Y = a0+a1x+………………….+apx
p
,    p<n.                 (3) 

 
The essence of the method is to reduce the residual R at each 
data point: 

Ri =  yi-a0-a1xi-a2xi
2
…………………-apxi

p 
.
                            

(4) 
The computed R is used in predicting the better choice of the 
model.An attempt to achieve the accuracy of the adopted 
method is presented with detailed result analysis. 

 

 

 

Figure. 1.  3D object projected on to a 2D plane 

 

Photogrammetry is the process of determining the geometric 
properties of objects from photographic image. As the 
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profession evolves and the technology advances, the calibration 
task becomes more complex. The quality of camera systems has 
improved significantly over the years and one might argue that 
camera calibration may appear to be less important. However, 
the development of new sensors and integration of these 
sensors with other systems make the need for calibration as 
important as before and probably more difficult to perform. 
This motivated to estimate the camera parameters with a novel 
approach using polynomial regression which lessens the task 
compared to the existing methods. Polynomial Regression fits a 
polynomial model with one predictor variable which facilitates 
the need for the proposed work. 

The organization of the paper is as follows: Section II presents 
some of the related works. In section III, the steps taken in 
creating the dataset is endeavored. Section IV briefly explains 
polynomial regression and its application in computing the 
equations for the focal length. Section V gives the algorithm 
followed by Results and Analysis and concluded in Section VI. 

II. Related Works 
Calibrating camera from a single image requires prior 

information of the scene. It is learnt from the literature that no 
single calibration technique suits best for all the applications, as 
the application depends on the situation a user needs to deal 
with. Few of the existing methods are discussed here. Classical 
camera calibration methods require more than one image, they 
partly depend on the relationship between images. Since 
camera calibration is essential for 3D reconstruction, classical 
methods lack the power to deal with single images from 
unknown sources such as the Internet or magazines. Another 
direction is camera calibration from a single image. Unlike 
camera calibration from multiple images, for a single image, 
prior geometrical information is required.  The related works 
regarding the single camera calibration is discussed below. 

The different approaches in attaining the camera calibration can 
be classified in the following categories: 

 Using Vanishing points and Vanishing lines 

 Using Circles 

 Using Collaboration of Vanishing point/lines and 
circles 

 Using Symmetry 

 Using four coplanar control lines 

 Using three known coplanar points 

The method proposed by Caprile and Torre [1] is based on the 
view of a cube, whose orientation is set at 45° in order to 
achieve optimized accuracy. Three vanishing points can be 
retrieved from the image of the cube and the intrinsic parameter 
can be calculated from the property of the vanishing points. 
Guillou et al. [2] extended the work without any calibration 
pattern using a single image containing two vanishing points, a 
known line segment, the principal point of which lies in the 
center of the image and the user-fixed aspect ratio. The work of 
Svedberg and carlsson [3] is also derived from Caprile and 
Torre using the seemingly orthogonal wedge. One more work 
by Wilczkowiak [6] using parallelepipeds rather than cubes is 
claimed to be an improvement since computing vanishing 
points is numerically unstable. The other works proposed by 

Deutschu [4], Kushaln et al. [5] and Wilczkowiak et al. [6] is an 
improvement by adding the ideas of normalization and 
factorization, the intrinsic parameters can be computed and the 
error can be suppressed. Wu et al. [7] adopted RANSAC 
algorithm along with vanishing points and lines. The latest 
work on this approach is by Avinash and Murali [8] who 
propose a method of containing a rectangular prism. The 
rectangular prism is used to generate two vanishing points. 
Then fixing up the picture plane and fixing up the station point 
are carried out. Thus the intrinsic parameters can be calculated 
from the formed equation. Frenment and Chellali [9] uses one 
image of two concentric circles of known radii. The perspective 
projections of concentric circles i.e., ellipses are estimated to 
find the intrinsic and extrinsic parameters. Teramoto and Xu 
[10] have proposed a method which contains 3 balls. Chen et al 
[11] calibrate camera with two coplanar circles. Jiang and 
Quan[12] propose a way of detecting concentric circles and 
form a correspondent calibration method. Colombo et al. 
calibrate the camera with two coaxial circles. Wang et al. [13] 
contributed camera calibration from two line segments with 
equal length or known length ratio, circle and a vanishing point. 
Chen et al. [14] calculates all intrinsic parameters from two 
coplanar circles and vanishing points/lines. The use of 
symmetry was proposed by Hong et al. [15] using translational, 
reflective and rotational symmetry. Shang et al adopt 4 coplanar 
lines in the image. The authors claim that using control lines 
also brings the benefit of suppressing the image noise.  

In spite of the existing ample number of techniques found in the 
literature for camera calibration, still there is a scope for a 
stable self-calibration method in real time conditions. The 
linear calibration techniques use reference points of the 
reference object in the world coordinate system [16]. In case of 
mobile robots and autonomous vehicles, as the camera will be 
in motion, mapping of the world coordinate system and the 
camera coordinate system is a challenging task. The existing 
works use multi-point correspondence. Motivated by these 
factors, the current work attempts in designing the technique in 
finding the camera parameters based on the length of the 
calibration object.  An additional strength of the proposed work 
is to achieve the calibration with the two-point correspondence. 
A basic foundation for camera calibration with low 
computational complexity is achieved. In the current work, the 
focus is on finding the intrinsic parameter (Focal Length). A 
novel approach is designed using polynomial equations of order 
3 and a stick as the calibration object in the current work. 

III. Generating Dataset 
Images of the chosen calibration object (i.e., stick) are 

captured using Nikon camera of resolution 3872 x 2592. The 
actual length of the calibration object is 25cm. The image of the 
calibration object is captured by aligning it, in line with the lens 
of the camera at six different focal lengths (18mm, 24mm, 
35mm, 50mm, 70mm and 105mm). At each focal length, the 
distance of the calibration object is varied from 50cm to 160cm 
in steps of 10cm. For each distance, the calibration object is 
varied at the angular orientation of 10° each starting from 0° to 
90°.  The process is repeated at all levels of distances and focal 
lengths. The length of the calibration object is measured in 
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pixels from each captured image and thus a data set is created  
as shown in TABLE III. 

The length of the stick measured at varied distances facilitating 
the prerequisites to compute the focal length of the camera 
using polynomial regression is explained in the section to 
follow.  

To compute the focal length of the camera, the steps taken are: 

1. Constructing Polynomial equations for distances and 
angles. 

2. Building the mathematical model based on the 
coefficient of the polynomial equations of step 1. 

3. Determining the intrinsic camera parameter- focal 
length. 

These steps ultimately compute the focal length of the camera. 
The focal length of the lens is the distance between the lens and 
the image sensor when the subject is in focus, usually stated in 
millimeters (ex. 18mm, 24mm, 35mm etc.). The angle of view 
is the visible extent of the scene captured by the image sensor. 
Wide angle of view capture greater areas, small angles capture 
smaller areas. Changing the focal length changes the angle of 
view. If the focal length (18mm) is shorter, the angle of view 
will be wider and greater area will be captured. The longer the 
focal length (105mm), the smaller the angle and the subject 
appears to be large. Fig. 2 illustrates the above discussed 
concepts. 

 

 

Figure 2. Illustrating relationship between focal length and the field of view 

IV. Polynomial Regression 
Analysis 

The previous section gives the necessary setup of the 
calibration object required for the image acquisition and the 
dataset of the length of the stick facilitating the need in 
computing the focal length of the camera. The dataset is 
analyzed with the polynomial regression as explained below to 
find the camera parameter. A statistical method called 
―regression‖ is used to estimate the unknown values of one 
variable from the known values of other variable. Polynomial 
regression is a form of linear regression in which the 
relationship between the independent variable x and the 
dependent variable y is modeled as an n

th
 order polynomial. 

Polynomial regression fits a nonlinear relationship between the 
value of x and the corresponding conditional mean of y, 
denoted E(y/x). The goal of regression analysis is to model the 
expected value of a dependent variable y in terms of the value 
of an independent variable x. 

In simple linear regression, the model  

Y=a0 + a1x + € (5) 

where € is an unobserved random error. In this, for each unit 
increase in x, the conditional expectation of y increases by a1 
units.  

In case of quadratic model, it takes the form: 

Y= a0 + a1x + a2x
2 
+a3x

3
+ € (6) 

In this, for each unit increase in x, the conditional expectation 
of y increases by a1 + 2a2x units.  

In general, the expected value of y has an n
th

 order polynomial, 

Y= a0 + a1x + a2x
2 
+ a3x

3 +
...+ anx

n 
+€ (7) 

In statistics, the coefficient of determination R
2
 is the 

proportion of variability in a dataset that is accounted by a 
statistical model. In this definition, the term ‗variability‘ is 
defined as the sum squares. Coefficient of determination is used 
in trend analysis. It is computed as a value between 0 (0 
percent) and 1 (100 percent). When the value is higher, it will 
fit better. Coefficient of determination is symbolized by R

2
 

because it is square of the coefficient of correlation symbolized 
by R. The coefficient of determination is important in 
determining the degree of linear-correlation of variables 
('goodness of fit') in regression analysis and is called R-square.. 
R-square always increases when a new term is added to a 
model. The result of polynomial regression analysis at each 
distance varied at different angles with the R-Square is given in 
TABLE IV. In the experiment conducted, the R

2
 varies from 

99.8% to 100%. 

The equations generated are of the form: 

Y=a + bx + cx
2
 + dx

3
 (8) 

where a is the initial intercept; b, c and d are the partial 
regression coefficients for variables x, x

2
 and x

3
. The general 

principles of polynomial regression are the fitted model and is 
more reliable when it is built on large number of observations 
and do not extrapolate beyond the limits of observed values. 
Also choose values for the predictor (x) that is not too large as 
they will cause overflow with high degree polynomial. 

Using the constants a, b, c and d from the regression equation 
(Refer TABLE IV –Distance 100cm) the mathematical 
equations (9,10 and 11) are formed. The mathematical 
equations for the other distances are also derived. 

TABLE I.  CONSTANTS USED IN DERIVING EQUATIONS AT DISTANCE 100CM 

Distance = 100cm 

 

a b c d 

18 730.5 -3.024 -0.094 0 

24 975.1 -3.435 -0.145 0 

35 1358 -4.364 -0.217 0.001 

50 1914 -7.392 -0.273 0.001 

70 1338 48.3 -1.275 0.006 
 

    Polynomial regression equation is generated for each of the 
constant as below: 

For constant b,  
FL = 5.289-4.823*x+0.183*x

2
 -0.001*x

3
 

1)  (9) 

For constant c,  
FL = -5.489-246.6*x-216.4*x

2
-54.46*x

3
 

2)  (10) 
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For constant d, 
 FL = 21+25515*x-4*10

6
*x

2
+2*10

8
*x

3
 

 (11) 

These equations (9, 10 and 11) are used to compute the intrinsic 
camera parameter (Focal length). 

V. Algorithm/ Results and 
Analysis 

The steps taken to find the focal length of the camera are: 

1. An image of the calibration object at any orientation, 
distance and focal length is given as an input. 

2. The length and angle of the calibration object is 
computed. 

3. Computed length in step 2 is compared with the 
dataset and the corresponding polynomial regression 
equation coefficients  (b, c, d) are retrieved. 

4. The partial regression coefficients (b, c, d from 
TABLE I) are applied to the computed mathematical 
equations ((9), (10)and (11)). 

5. The focal length is computed using all the three 
equations (((9), (10) and (11)). 

6. The average of the focal length obtained in step 5 
gives the focal length of the camera. 

The proposed method has been tested on the real images.

 
Figure3. Graph of AFL v/s CFL 

 

The error obtained (TABLE II) and the graph (Fig. 3) shows 

the accuracy in the results. The error rate is analyzed by 

comparing the actual focal length (AFL) with the computed 

focal length (CFL) and found to be satisfactory with an 

average error rate of 1.340496. 

TABLE II.  COMPARISON OF  CFL WITH  AFL 

CFL AFL Error 

19.46646194 18 1.466462 

23.64667054 24 -0.35333 

37.00315156 35 2.003152 

46.95724732 50 -3.04275 

76.62894777 70 6.628948 

VI. Conclusion 
The paper presents a method to compute the intrinsic camera 

parameter based on the cubic polynomials using an easily 

available stick as a calibration object. The total number of 

images used for the experimentation is 720 images. The results 

obtained in the proposed work are accurate with an average 

error rate of 1.340496. The method has the advantage of being 

analytical and straight forward, comparing the results obtained 

with the zhang‘s method. It is non-iterative and consumes less 

time. One more advantage of the proposed work is that it 

requires only one image and the manual selection of only two 

points; in contrast, zhang‘s method requires several images, 

selecting seal the corner points of the checker board for each 

image which are used in the iterative solution. The major 

drawback of the proposed method is, it requires a specific setup 

to work accurately. 
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