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Abstract— This paper proposes the design and 

implementation of GF (216) multiplier using composite field 

arithmetic. We have introduced an irreducible polynomial 

X2+X+ξ. This irreducible polynomial is required for 

transforming Galois field of GF (216) to composite field of GF 

(((22)2)2)2. Our estimation of the value of ξ and subsequently the 

composite field arithmetic hence forth derived achieved high 

speed GF (216) multiplier. The design being purely 

combinational is a clock free design. We achieved critical path 

delay of 11.5ns between inputs to output data path. We have 

used combination of ᴪ and λ as {10}2 and {1100}2 respectively. 

Due to this value of ᴪ, λ, ξ we achieved fastest implementation, 

at the cost of few extra gates. The design methodology includes 

implementation and verification on FPGA using Xilinx ISE 

and finally the physical layout was designed on ASIC using 

90nm CMOS standard cell libraries. Our implementation 

result shows that without pipelining the hardware core can 

achieve throughput of 5.39 Mbps on  FPGA and we achieved 

throughput of 5.43Gbps on  90nm ASIC. 

 

Keywords— Galois field, composite field arithmetic, 

isomorphic   mapping. 

 

I.  Introduction  
   Multiplications are elementary mathematical operations 

extremely important in signal processing applications.To 

keep pace with the technology, high speed applications 

require faster methods of multiplication. Multipliers are the 

key components of many high performance systems such as 

FIR filters, microprocessors, and digital signal processors 

etc.Thecomputational performance of a DSP system is 

limited by its multiplication performance and since, 

multiplication dominates the execution time of most DSP 

algorithms, high-speed multiplier is much desired. 

Currently, multiplication time is still the dominant Factor in 

determining the instruction cycle time of a DSP chip.hence, 

optimizing the speed element and area of the multiplier is a 

major design issue. The three important considerations for 

VLSI design are power, area and delay. 
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There are number of techniques to perform binary 

multiplication. In general, the choice is based upon factors 

such as latency, throughput, area, and design complexity. 

Galois field multiplier, Array multiplier, Booth Multiplier 

and Wallace Tree multiplier are some of the standard 

approaches to have hardware implementation of multiplier 

which are suitable for VLSI implementation at CMOS level. 

Galois field multiplier is fix bit multiplier while others are 

not. Galois field multipliers are high in performance because 

of their carry free property. Due to decomposition of Galois 

field to composite field, complexity is less than Array 

multiplier, Booth Multiplier and Wallace Tree multiplier. In 

this paper, high speed GF (2
16

) multiplier is implemented 

using tower field decomposition, employing lowest 

resources. 

 

In the work of [1]   presents the design and 

implementation of substitute Byte process element required 

in AES encryption. They have used the composite field 

arithmetic for computing   multiplicative inverse. The 

conversion of GF (2
8
) to GF (2

4
) and subsequently to GF (2) 

has reduced the complexity.  

Isomorphic Mapping and Inverse Isomorphic Mapping 

Technique is used for mapping of Galois field to composite 

field and vice versa [2]. For mapping of GF (2
16

) to GF (2
8
) 

irreducible polynomial is used which contain constant μ. 

They performed the multiplication with an assumed value 

for the constant μ [3]. In the literature published till date, 

design methodologies of a Galois field multiplier and theory 

based on pipelining has been presented. A design of Galois 

field multipliers using a composite field includes designing 

of lower order Galois field multiplier. For implementation of 

GF (2
2
), GF (2

2
)

2
, GF ((2

2
)

2
)

2
, GF (((2

2
)

2
)

2
)

2
 we use 

irreducible polynomial which has constant ᴪ, λ, ξ 

respectively. 

 

The main contribution of this paper is to estimate the 

value of ξ for Implementation of GF (2
16

) to GF (((2
2
)

2
)

2
) 

tower field conversion and also implementing on FPGA as 

well as on 90nm CMOS technology such that the design 

consumes low power and area and achieves high speed of 

operation. The value of ξ which is 8 bit constant required in 

irreducible polynomial X
2
+X+ξ. 

 

The rest of the paper is organised in the following 

manner. Section II explains the fundamentals of Galois field 

, Section III elaborates our implementations of multiplier. 

The paper is concluded by Section IV that discusses our 

results and comparison.  

II. Galois field 
A Galois field is a field with a finite number of elements. 

Notations of the finite field are GF (p
m
), where the letters 
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GF stands for “Galois Field”. The order of number of 
elements of a Galois field is of the form p

m
 where „p‟ is 

Prime number called characteristics of field & „m‟ is 
positive integer called dimensions of the field. The Galois 
Field operations especially have the advantage of achieving 
high performance because of its carry free property and low 
resource requirement.  The complete multiplication 
operation can be realized by using XOR gates only. 

 

The multiplicand and multiplier are expressed in GF 
where in any number is expressed in a polynomial form. 
Here a polynomial f(x) is a mathematical expression in the 
form an x

n
 + an-1x

n-1
 + ... + a0. The highest exponent of x is 

the degree of the polynomial. For example, the degree 
of x

5
 + 3x

3
 +4 is 5. In a polynomial, an, an-1... a0 are 

called coefficients. If in a polynomial, the coefficients  an, 
an-1... a1 are all 0, or in other words, the polynomial is in the 
form of a0, we call this polynomial a constant. We can add, 
subtract polynomials by combine the terms in the 
polynomials with the same powers. 

 

Let 

 f (x) = anx
n
 + an-1x

n-1
 + ... + a0 and 

g (x) = bmx
m
 + bm-1x

m-1
 + ... + b0  

 

be two polynomials over a field F, then there is a unique 
polynomial r(x) of degree smaller than m and another unique 
polynomial h(x), both over F, such that f(x) 
= h(x)*g(x)+r(x). The polynomial r(x) is called the 
remainder of f(x) modulo g(x). For polynomials a(x), 
b(x) and g(x) which are over the same field, we say a(x) is 
congruent to b(x) modulo g(x) written a(x) ≡ b(x) mod g(x). 

 

Example: GF (2
2
) is generated by F(x) = x

2
+x+1 

 Let  A  = (11) = x+1 

 B  = (10) = x 

Then C = AB = (x+1) x mod F(x) 

            = (x
2
+x) mod F(x) 

            = (x +x+ 1) +1 mod F(x) 

            = 1 

            = (01) 

 

III. GF multiplier Implementation 
The GF (2

16
) elements can be represented in the polynomial 

form. For example {1010010101001101}2is represented 

asq
15

+q
13

+q
10

+q
8
+q

6
+q

3
+q

2
+1 

Polynomial q is represented as qHx+qL 

Where qH is higher bits and qL lower bits. x is constant 

number 

By using irreducible polynomials as shown below GF (2
8
) 

can be decompose to lower order [2]. 

GF ((2
2
)

2
)

2
to GF (2

2
)

2
                    : X

2
+X+λ                     (1) 

GF (2
2
)

2
to GF (2

2
)                          : X

2
+X+ᴪ                     (2) 

GF (2
2
) to GF (2)                           : X

2
+X+1                     (3) 

X
2
+X+λ,  X

2
+X+ ᴪ,  X

2
+X+1 are irreducible polynomials 

where λ, ᴪ are 4 bit and 2 bit respectively.There are number 

of combination for ᴪ, λ are possible. Combination of ᴪ and λ 

are mentioned in Table I. 

 
TABLE I: COMBINATION OF ᴪ AND λ. 

Values of ᴪ Values of λ 

{10}2,{11}2 

{1000}2,{1100}2,{1001}2,{1101}2, 

{1010}2,{1110}2,{1011}2,{1111}2 

 

 

 
 

Fig: 1. Representation of decomposition of GF (216) to GF(2) 

 

Let K=Q*W, each a 16-bit finite field and represented as 

 

K = {K15,  K14 ,......, K0}, Q={Q15,Q14,.......,Q0} And  

W = {W15, W14  ,........,. W0}   are elements of GF (2
16

) 

Therefore, K=KHX+KL 

Where KH = {K15, K14  ,........, K8}    And 

KL={K7,K6,...........,K0} 

Similarly, Q=QHX+QL 

Where QH = {Q15, Q14   ,........, Q8} And 

QL={Q7,Q6,..........,Q0} 

And W=WHX+WL 

Where WH= {W15, W14 ,........., W8} And WL= 

{W7,W6,.......W0} 

K= KHX+KL=(QHX+QL)*(WHX+WL) 
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K= QH*WH*X
2
+QH*WL*X+QL*WH*X+QLWL 

K=QH*WH*X
2
+(QH*WL+QL*WH) X+QL*WL                     (4) 

For decomposition of more complex GF (2
16

) to lower order 

GF ((2
2
)

2
)

2
, GF (2

2
)

2
, GF (2

2
) and GF (2

1
) irreducible 

polynomials of (1), (2) and (3) are used. The decomposition 

of GF (((2
2
)

2
)

2
)

2
to GF ((2

2
)

2
)

2
   is done by using irreducible 

polynomial X
2
+X+ξ where ξ is an 8 bit constant. 

Substituting the X
2
 term with X

2
= X+ξ in equation (4) 

results in (5). 

K= QH*WH*(X+ξ) + (QH*WL+QL*WH) X+QL*WL                   (5) 

K= (QH*WH+QH*WL+QL*WH) X+QH*WH*ξ+QL*WL    

belong to GF (2
8
). 

The values of ξ may take up many combinations. From 

Fig.1, the calculation of multiplication in composite field, 

elements can‟t apply directly to the GF (2
16

) elements.It 

must be mapped into Galois field first. For that purpose 

isomorphic function δ is used.After performing 

multiplication,the result will also have to map back from its 

composite field. For that purpose inverse isomorphic 

function δ
-1

 is used.Both δ and δ
-1

 can be represented in 

16*16 matrix.Let q be the element in GF (2
16

) then the 

isomorphic mapping and its inverse can be written as δ*q 

and δ
-1

*q. 

 

         [6] 

 

        [7] 

 

Fig.2. Implementation of GF (216) multiplier 
 

In order to construct a GF (2
16

) multiplier, GF (2
8
) multiplier 

implementation is used. For multiplication of 16 bit binary 

number in Galois field, two 16 bit inputs are given and we 

get output of 16 bit. 

 

 

 
 

Fig.3. Isomorphic mapping of GF (216) to GF((28)2) 

 

As shown in Fig. 3, the 16 bit binary input given to the delta 

block transforms it from finite field to composite field [3]. 

For each input, multiplicand and multiplier, the isomorphic 

transformation needs to be performed prior to applying to 

block as shown in Fig.2. 
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Fig. 4. Hardware block for GF (28) multiplier 

 

The block in Fig. 4, represents the 8 bit Galois field 

multiplier, which has two 8 bit input and 8 bit output. This 

block can be implemented using combinational gates [2]. 

 

 
Fig. 5. Hardware block for GF (28) multiplier with constant ξ 

 

The block in Fig.5, represent multiplication with constant ξ 

which is an 8 bit constant used in irreducible 

polynomialX
2
+X+ξ for decomposition of GF (((2

2
)

2
)

2
)

2
 to 

GF (((2)
2
)

2
)

2
. 

 

 
Fig.6. Inverse Isomorphic transformation block  

 

The inverse isomorphic transformation of 16 bit as shown in 

Fig. 6 maps the polynomials represented in composite field 

arithmetic to GF(2
16

) finite field format. It is a 16*16 bit 

matrix which can be implemented using XOR gates [3]. 

 

In the proposed GF (2
16

) multiplier in Fig.2, the coefficient ξ 

can take any value out of 128 combinations. The selection of 

ξ may change the number of gates required while 

implementing GF (2
16

) multiplier. The estimation of the 

constant ξ is a complex and time consuming method and 

therefore we have followed a methodology to select value of 

ξ that is explained in the subsequent paragraphs. 

 
TABLE II: COMPOSITE FIELD CONSTRUCTION WITH NORMAL BASIS 

[3][2] 

Galois Field 
Normal 

Basis 
Defining Polynomial 

GF(216)→GF(((22)2)2)2 {δ,δ256} 
n(X)=X2+X+ξ,where ξ= 

β+ λ γ 

GF(28)→GF((22)2)2 {γ,γ16} 
m(X)=X2+X+λ, where 

λ = ᴪ2 β 

GF(24)→GF(22)2 {β,β4} l(X)=X2+X+ ᴪ 

GF(22)→GF(2)2 { ᴪ , ᴪ2} k(X)=X2+X+1 

 

The multiplication with normal bases [3] has been 

considered for 16-bit multiplication and each internal block 

of that design was analysed with known inputs and their 

output products such that value of ξ can be estimated.  

Subsequently GF(2
2
) is constructed by using the irreducible 

polynomial k(X) over GF(2).Similarly GF(2
2
)

2
 is constructed 

by using irreducible polynomial l(X) ,GF((2
2
)

2
)

2
 is 

constructed by using irreducible polynomial m(X) and 

GF((2
2
)

2
)

2
)

2
 is constructed by using irreducible polynomial 

n(X) . 

The Composite field construction for multiplication with ξ 

block can be further elaborated only after unfolding the 

various constituent blocks wherein all are expressed in 

normal base. 

Implementation of Mᴪ and Mᴪ
2
 Multiplier blocks 

Let A=a0 ᴪ+ a 1ᴪ
2
and B=b0ᴪ +b1ᴪ

2
, where a0, b0, a1, a0 

,c0,c1ϵ GF(2).Multiplication by ᴪ and ᴪ
2
 in GF (2

2
) with 

Normal Bases are shown in (8) and (9). 

 

ᴪA= ᴪ(a0 ᴪ+ a 1ᴪ
2
) 

          =a0ᴪ
2
+a1ᴪ

2
ᴪ 

          =a0ᴪ
2
+a1(ᴪ+1)ᴪ 

          =a0ᴪ
2
+a1ᴪ

2
+a1ᴪ 

          = (a0+a1)ᴪ
2
+ a1ᴪ(8) 

 

 
Fig.7.Implementation of ᴪA for Mᴪ block 

 

ᴪ
2
A= ᴪ

2
 (a0 ᴪ+ a1 ᴪ

2
) 

          = a0 (ᴪ+1) ᴪ+a1(ᴪ
2
+1) 

          = a0 ᴪ
2
+a0 ᴪ+a1 ᴪ

2
+a1 

          = a0 ᴪ
2
+a0 ᴪ+a1 ᴪ 

          = a0 ᴪ
2
+(a0+a1) ᴪ (9) 

 
 

Fig. 8.Implementation of ᴪ2A for Mᴪ
2
block 

 

Implementation of Mλ
2 block 

Let A=a0 β+ a 1 β
4
and B=b0β +b1β

4
, where a0, b0,a1,a0 ,c0,c1 

ϵ GF(2
2
).Multiplication of A ϵ GF (2

2
)
2
 by λ

2
,β and ᴪβ are 

computed as follows 

λ = ᴪ
2
 β 

λ
2 
= (ᴪ

2
 β) (ᴪ

2
 β) 

    = ( ᴪ β+ β) ( ᴪ β+ β) 

    = ᴪ
2
 β

2
+ᴪ β

2
+ᴪ β

2
+ β

2
 

    =ᴪ β
2
+ β

2
+ β

2
 

    =ᴪ β
2 
(10) 

λ
2
A= ᴪ β

2
 A 

      = ᴪ β
2
 (a0β+ a1β

4
) 

      = a0ᴪ β
3
+a1ᴪ β

6
 

      = a0ᴪ (β+ᴪβ
4
 ) +a1ᴪ

2
 β 

      = (a0ᴪ+a1ᴪ
2
) β+ a0ᴪ

2
 β

4                                                                  
(11) 
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Fig:9 Multiplication of A with λ2 for Mλ

2 block 
 

    βA =β ( a0β+ a1β
4
 ) 

         =a0 [(ᴪ+1) β+ᴪ β
4
]+a1(ᴪ β+ᴪ β

4
) 

         =[a0+(a0+a1) ᴪ] β+[(a0+a1) ᴪ] β
4
       (12) 

 

 
Fig:10  Multiplication of A with β  for Mβ block 
 

ᴪ βA=a0(β+ᴪ
2
 β

4
)+a1(ᴪ

2
 β+ᴪ

2
 β

4
) 

        =( a0+a1ᴪ
2
) β+( a0ᴪ

2
+a1ᴪ

2
) β

4
                      (13) 

 

 

 
 

 

 

 

 

Fig. 11. Multiplication of A with ᴪ β for Mᴪ β block 

 

Multiplication of A ϵ GF ((2
2
)

2
)

2
  with ξ, where a0, 

b0,a1,a0 ,c0,c1 ϵ GF(2
2
) 

 

A= (a0 γ+a1 γ
16

) 

ξ A=( β+ λ γ) (a0 γ+a1 γ
16

) 

      =a0 β γ+a1 β γ
16

+a0 λ γ
2
+a1 λ γ

17
 

      = [ a0(ᴪ β)+( a0+ a1) λ
2
] γ+[a1 β+( a0+ a1) λ

2
] γ

16
(14) 

 

 

 
 

 

 

 

 

 

Fig.12. Multiplication of A with ξ 

To determine value of ξ 

Substitute A= {a1a0} = {0000 0001},where AϵGF((2
2
)

2
)

2
. 

Such that ξ A=ξ in the equation (14) which implemented in 

Fig. 12.  The resultant values of nets can be shown in Fig.13. 

 

a1= {0000} and a0 = {0001} 

 

Multiplication of ξ A, where A= {0000 0001}2 

 
 
Fig.13. Estimation of ξ = {1110 0011}2 

 

Multiplication of q with ξ 

Let q be any 8 bit binary number 

 

k0=q(6)+q(5)+q(4)+q(1)+q(0) 

k1=q(5)+q(4)+q(0) 

k2=q(5)+q(4)+q(3)+q(2) 

k3=q(4)+q(2) 

k4=q(4)+q(1) 

k5=q(7)+q(5)+q(3)+q(1)+q(0) 

k6=q(7)+q(5)+q(5)+q(4)+q(2) 

k7=q(7)+q(6)+q(4)+q(3)         (15) 

k={k7, k6, k5, k4, k3, k2, k1, k0} 

 

 

IV. Our Result and Comparison 
The implementation of design resulted combinational logic 

circuit which contain the combination of AND and XOR 

gates. Our ξ value is {11100011}2.The design was 

implemented on Vertex 4 FPGA using Xilinx ISE tool. In 

[2] the authors suggested the value of ψ and λ as {10}2 and 

{1100}2 respectively. For our implementation, we took the 

value of ψ, λ and ξ as {10}2, {1100}2 and {11100011}2. We 

achieved the critical path delay 11.5ns.  

Our implementation result shows that without pipelined, we 

achieved throughput of 5.39Mbps on FPGA and a 

throughput of 5.43Gbps on 90nm ASIC respectively.  While 

synthesizing and layout design, we have considered TSMC 

90nm standard cell libraries. Cadence RTL compiler and 

Encounter are the tools used for synthesis and physical 

layout design. The final layout of our implementation is 

shown in Fig. 14. 

The performance of our FPGA implemented design is better 

than the other two designs as mentioned in Table III.  Our 

implementation on FPGA as well ASIC consumes very low 

area and power without pipelining the architecture. 
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TABLE III:  COMPARISONS WITH OTHER MULTIPLIER. 

Hardware 

Platform 
Implementation Area Speed 

(MHz) 

Power 

(mW) # of 

LUTs 

# of 

Slices 

FPGA 

WG-29[7] 6,449 - 30 380 

WG-29[8] 4,044 - 34 187 

MOWG-29[8] 5,512 - 35 342 

Ours 272 156 86.3 105 

  Area(gates) Speed 

(MHz) 

Power 

(mW) 

ASIC 

WG-29[7] 33,180 144 7.28 

WG-29[8] 19,892 169 4.45 

MOWG-29[8] 26,261 151 5.89 

Ours 2,999 8690 0.27 

.  

  

 Fig 14: Physical layout of our implementation 

: 
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