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Abstract—In this study, it is aimed to analyze the free 

vibration behavior of cross-ply laminated composite rectangular 

thick plates with mixed finite element method based on the 

Gâteaux differential. Mixed finite element model has eight 

unknowns, displacement, bending and twisting moments, 

rotations and shear forces. In the free vibration analysis, 

laminated composite rectangular thick plates are considered for 

different geometrical and material parameters, lamination 

scheme and boundary conditions. Accuracy of the presented 

functional and mixed finite element formulation is shown by 

comparing the results of numerical examples with the ones 

available in the literature. The results obtained in this study are 

found to be in good agreement. 
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I.  Introduction  
Composite materials have high strength when compared 

to isotropic materials, easily shaped and light due to their 
specific weight. In order to understand the response of 
composite structural elements, lots of studies are conducted 
in literature. Studies in literature generally present 
approximate solution of the problem with Finite Element 
Method (FEM), Finite Difference Method, Rayleigh-Ritz 
Method and Galerkin Method instead of the exact solution. 
In this study, free vibration analysis of cross-ply laminated 
composite thick plates is carried out by mixed finite element 
method based on the Gâteaux differential approach. The 
Gâteaux differential is applied to elastic, viscoelastic and 
composite beams [1-4]. Detail information about Gâteaux 
differential can be found in the literature [5]. 

 There are many studies about the free vibration analysis 
of laminated thick plates in literature and various analytical 
and numerical methods are considered for analysis. Dai et 
al. [6] used a mesh free method for static and free vibration 
analysis of shear deformable laminated composite plates. 
Yoshiki and Toshihiro [7] studied the analytical models for 
vibration of cross-ply laminated thick plates. Luccioni and 
Dong [8] used Levy-type finite element analysis of vibration 
and stability of thin and thick laminated composite 
rectangular plates. Khdeir and Reddy [9] studied free 
vibrations of laminated composite plates using second order 
shear deformation theory. Liu et al. [10] used the confirming 
radial point interpolation method for the static and free 
vibration analysis of laminated composite plates.  
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Batra and Aimmanee [11] studied vibration of thick 
isotropic plates with higher order shear and normal 
deformable plate theories. Aagaah et al. [12] examined 
natural frequencies of laminated composite plates using 
third order shear deformation theory. Zhou et al. [13] used 
finite layer method for the free vibration analysis of thick 
layered rectangular plates with point supports. Shimpi and 
Ainapure [14] used layer-wise trigonometric shear 
deformation theory for free vibration analysis of two-layered 
cross-ply laminated plates.  

In this research, a new functional is constructed through 
a systematic procedure based on the Gâteaux differential for 
the free vibration analysis of cross-ply laminated composite 
thick plates. Mixed finite element method is used for the 
derivation of element matrix by selecting the linear shape 
functions. 

In order to verify the accuracy of the derived functional 
and presented mixed finite element formulation, numerical 
examples are solved. Results are compared with the ones 
available in the literature. It has been shown that, the 
presented mixed finite element formulation can accurately 
predict the vibration frequencies of the cross-ply laminated 
composite thick plates. 

II. Method 
A Cartesian coordinate system (x, y, and z) is defined on 

the central axis of the plate. Field equations of thick plates 
can be found in [15]. In this field equations, q is the uniform 
load which is applied at the top surface of the laminated 
plate. Mx, My, Mxy, Qx and Qy are the moment resultants and 
transverse force resultants of which their positive directions 

are illustrated in Figure 1. , xw  are the geometric 

parameters denote the displacement of a point (z) in the 
laminated plate and the cross-sectional rotation about x axis. 

 

Figure 1.  Internal Forces 

 



 

5 

Proc. of The Second Intl. Conf. On Advances in Civil, Structural and Mechanical Engineering - ACSM 2015 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-074-3 doi: 10.15224/ 978-1-63248-074-3-27 

 

The flexural rigidity matrix, Dij, in the field equations are 
defined as:  
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zk+1 and zk are the coordinates of the upper and lower 

surfaces of the k
th

 layer. 
For orthotropic materials of each layer of laminated 

composite plates, the two-dimensional stress-strain 
equations for the k

th
 layer can be written under the 

assumption of plane stress as: 
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where σ1, σ2, 12 are the stresses and 1, 2, 12 are the linear 

strain components referred to the principal material 

coordinates of layer (1-2). ( )k

ijQ  are elastic constants of the 

k
th

 layer and can be written as follows: 
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with Ei being Young’s modulus in the i
th 

material direction, 

μij is the Poisson ratio and  Gij, is the shear modulus of the i-j 

plane. 
The constitutive equations for the k

th
 orthotropic layer 

are transformed to the laminate coordinates (x, y, z) as 
follows: 
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where 
( )k

ijQ are the transformed elastic constants or stiffness 

matrix with respect to the laminate coordinates (x, y, z) [16]. 

The elements of 
ij

Q matrix can be written as follows: 
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where θ is the angle between the global axis and the local x-

axis of each layer as shown in Figure 2. 

 

 
Figure 2.  Global and local axis 

The dynamic and geometric boundary conditions of 
composite plates can be written in symbolic form as follows: 

Dynamic boundary conditions: 

M M 0.

Q Q 0.

 

 
                                   (6) 

Geometric boundary conditions: 

0.

w w 0.

 

  

                                  (7) 

Equilibrium, constitutive and field equations can be 
written in operator form as 

              
.
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where Q is a potential if the equality 
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is satisfied. Where dQ(u,u) is the Gâteaux derivative of Q 

and the inner product to two vectors. Therefore, the 
functional corresponding to the field equations is obtained as  

I s ds .
1

0

(u) = Q( u,u),u                  (10) 

where s is a scalar quantity. Details of variational procedures 
can be found in [17]. Finally from (10), the functional of 
cross-ply laminated composite thick plates becomes: 
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where subscript,  represents dynamic boundary condition, 

ε represents geometric boundary condition.  

The [q, w] expression in the functional I(y) can be 
defined as below in the dynamic analysis: 
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Element matrix derived for free vibration analysis, 
convert to the eigenvalue problem as below:  

     2* 0 .M wK                            (13) 

       
1*

22 12 11 12 .
T

K K K K K


                 (14) 

where K* represents reduced system matrices. Solution of 
this equation set is satisfied when coefficient determinant 
equals to zero. 

III. Numerical Example 
Example 1: 

An orthotropic simply supported cross-ply 
(0

0
/90

0
/0

0
/90

0
/0

0
) laminated thick plate of which its size to 

thickness ratio (thickness parameter), 2a/h=10 is considered. 
To select suitably refined mesh scheme, this example is 
solved for different orders of mesh scheme.  

Based on the different orders of mesh scheme, number of 
elements increased as shown in the first column of Table I.  

Material properties are; 

E1 = 25E2; G12 = G13 = 0.5E2; G23 = 0.2E2; μ12 = 0.25 

 

Frequency parameter 2

2

ρ
a / h)

Ε
     of cross-ply 

laminated thick plate for different number of elements are 
compared with previously published results [16] and 
presented in Table I. The numerical results show good 
convergence.  

TABLE I.  FREQUENCY PARAMETERS   FOR A CROSS-PLY 

(00/900/00/900/00) LAMINATED SIMPLY SUPPORTED THICK PLATE FOR 

DIFFERENT MESH SCHEME 

Number of Elements Ref [16] Present 

3x3 9,215 9,1732 

5x5 9,215 9,1780 

7x7 9,215 9,1783 

9x9 9,215 9,1784 

 

Example 2: 

An orthotropic simply supported cross-ply (0
0
/90

0
/0

0
) 

laminated thick plate of which its size to thickness ratio 
(thickness parameter), 2a/h=10 is examined. A uniform 
mesh (10x10) is used in a quarter of the plate.  

Material properties are; 

E1 = 25E2; G12 = G13 = 0.5E2; G23 = 0.2E2; μ12 = 0.25 

 
In order to determine the dependency of vibration 

frequencies on boundary conditions, first vibration 
frequency of  cross-ply laminated thick plates with different 
boundary conditions S-S-S-S (all edges are simply 
supported), S-S-S-C (three ends are simply supported and 
one end is clamped) and S-S-C-C (two opposite ends simply 

supported and other two ends clamped) are computed. 
Dependency of vibration frequency on the boundary 
condition is presented in Table II and frequency 

parameter 2

2

ρ
a / h)

Ε
     results are compared with 

previously published results [9]. The numerical results show 
good convergence.  

TABLE II.  DEPENDENCY OF FIRST VIBRATION FREQUENCY 

PARAMETER FOR DIFFERENT BOUNDARY CONDITIONS 

Boundary Condition Ref [9] Present 

S-S-S-S 12.163 12.256 

S-S-S-C 14.248 14.307 

S-S-C-C 16.383 16.405 

 
Example 3: 

An orthotropic simply supported cross-ply 
(0

0
/90

0
/90

0
/0

0
) laminated thick plate is considered. A 

uniform mesh (9x9) is used in a quarter of the plate.  

Material and geometrical properties are; 

G12 = G13 = 0.6E2; G23 = 0.5E2; μ12 = 0.25; 2a/h=5 

 

Frequency parameter 2

2

ρ
a / h)

Ε
     of cross-ply 

laminated simply supported thick plate for different E1/E2 
ratio. The results are compared with previously published 
results [18] and presented in Table III.  As can be seen from 
the table, the results obtained using the present mixed finite 
element method agrees closely with available solutions. 

TABLE III.  FREQUENCY PARAMETER    OF SIMPLY SUPPORTED 

CROSS-PLY LAMINATED THICK PLATE FOR DIFFERENT E1/E2 RATIO 

E1/E2 Ref [18] Present 

10 8.340 8.519 

20 9.613 9.798 

30 10.372 10.547 

40 10.899 11.061 

 

Example 4: 

As a last example, vibration frequency of simply 
supported cross-ply (0

0
/90

0
/0

0
) laminated thick plate are 

determined. A uniform mesh (9x9) is used in a quarter of the 
plate.  

Material and geometrical properties are; 

E1 = 175 GPa; E2= 7 GPa; G12 = G13 = 3.5 GPa; G23 = 1.4 

GPa; μ12 = 0.25; 2a/h=10 

TABLE IV.  VIBRATION FREQUENCY OF SIMPLY SUPPORTED CROSS-PLY 

(00/900/00) LAMINATED THICK PLATE (2A/H=10) 

2a/h Ref [12] Present 

10 12.190 12.272 
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The results are compared with previously published 
results [12] and presented in Table IV.  As can be seen from 
the table, the results obtained using the present mixed finite 
element method agrees closely with available solutions. 

IV. Conclusion 
In this study, with Gâteaux differential method a new 

functional corresponding to free vibration analysis of the 
cross-ply laminated composite thick plate is presented. For 
the analysis, mixed finite element method is used to obtain 
element matrices. Functional of cross-ply laminated thick 
plate  has eight unknowns in each node. For the solutions of 
functional, linear shape functions are used because of only 
first-order derivation exists in functional. 

Employing the developed mixed finite element 
formulation, cross-ply laminated composite thick plates 
including different number of layers are taken as examples 
to numerically evaluate the effects of the variation of 
geometrical and material parameters, and boundary 
conditions on the vibration frequencies.  

The performance of the presented mixed finite element 
formulation is verified by comparing the obtained results 
with the results of the numerical examples in the literature. 
The numerical results are found to be in good agreement 
with those available in the literature. 
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