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Abstract— This paper treats the chaos synchronization problem 

of chaotic Lu system via single variable information of the master 

system. By stability theory of cascade-connection system, the derived 

controller is featured as follows: (a) only single variable information 

of the master system is needed to transmit to slave system for 

synchronization; (b) the pre-knowledge of upper bound of the 

trajectory of the master system is eliminated; (c) the controller is 

linear feedback. Finally, the effectiveness of the proposed control law 

is also illustrated by the numerical simulation on Matlab environment 

as well as rigorous mathematical proof. 

 

Keywords— Lu Chaotic System, Single Variable, Chaos 

Synchronization, Nonlinear Feedback. 

I. INTRODUCTION 

In various application fields such as engineering, physics, 

chemistry, biology, and economy, we encounter phenomena 

that undergo spatial and temporal evolution. An important tool 

in modeling and analyzing these phenomena is the study of 

dynamical systems and chaos. The applications of dynamical 

systems and chaos include chaos control and synchronization, 

electronic circuits, secure communications, image encryption, 

cryptography, and neuroscience research. In the mid-1960s, 

Chua proposed a two-terminal resistor with a piecewise-

continuous voltage-current characteristic called Chua’s diode 

and the resulting circuit is the well-known Chua’s circuit. This 

motivated many authors to develop different nonlinear circuits 

and utilize these circuits in studying nonlinear phenomena and 

chaos. A modification to the ADVP circuit by adding a resistor 

in parallel with the inductor in the ADVP circuit is proposed in 

with the advantage that all the dynamics of the ADVP 

oscillator are displayed in a small range when varying the new 

system’s parameter. The fourth element in electronic circuits, 

called the memristor, was postulated by Chua in 1971. It is a 

two terminal element, in which the magnetic flux ϕ between 

the terminals is a function of the electric charge q that passes 

through the device. The memristor took its place alongside the 

rest of the more familiar circuit elements the resistor, the 

capacitor, and the inductor, when Williams and coworkers 

fabricated a solid state implementation of this proposed 

element. Several important applications of memristors have 
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been reported which include ultra dense semi-non-volatile 

memories and learning networks that require a synapse-like 

function. Also, one can obtain high frequency chaotic 

oscillators, which have great potential for applications in 

secure communication by using nano-scale devices like the 

memristor. 

Chaos control and synchronization have been intensively 

investigated during last decade [1-3] and still have attracted 

increasing attention in recent years. Chaos synchronization 

has many potential applications in secure communication, 

laser physics, chemical reactor, biomedical and so on. Up to 

now, numerous methods has been proposed to cope with the 

chaos synchronization, such as back stepping design method 

[3], adaptive design method [4], impulsive control method 

[5], sliding mode control method [6,7], and other control 

methods [8-14]. The objectives of this paper are as follows. 

Firstly, to give sufficient conditions of parameters that make 

equilibrium points of the Lu’s system to be asymptotically 

stable by using linear feedback control and adaptive control 

methods. Finally, we investigate adaptive synchronization for 

the Lu’s system using active control. 

 

Consider two nonlinear systems: 

  

( , )                                     (1)

( , ) ( , , )                    (2)

x f t x

y g t y u t x y



 
      

                                                         

Where , , , [ , ],n r n nx y f g C        

[ , ], 1,r n n nu C r         is the set of non-

negative real numbers. Assume that (1) is the drive system, (2) 

is the response system, and ( , , )u t x y  is the control vector. 

II.  CHAOS SYNCHRONIZATION 

Definition 1. Response system and drive system are said to be 

synchronic if for any initial conditions 0 0( ), ( ) ,nx t y t   

 

lim ( ) ( ) 0.
t

x t y t


   

 

In this section, we assume that there are two Lu’s systems such 

that the drive system (with the subscript 1) drives the response 
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system (with the subscript 2). The drive and response systems 

are given, respectively, by  
.

1 1 1
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and 
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We have introduced three control functions 

1 2 3( ), ( ), ( )u t u t u t  in (4). Our goal is to determine the 

control functions 1 2 3( ), ( ), ( )u t u t u t . We define the errors 

system as the difference between system (3) and the 

controlled system (4). Let us define the state errors between 

the response system (4) and the drive system (3) as 
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By subtracting (3) from (4) and by using the notation in (5), 

we have 

 
2

1

4

1 1 2 2 2

2

2 2 1 1 3

( ) 2 ( )

4 ( )

9 ( )

x y x x

y y

z z

e a e e a e u t

e x z x z c e u t

e x y x y b e u t

   

   

   

                   (6) 

 

We define active control functions 1 2 3( ), ( ), ( )u t u t u t  as 

follows 
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Hence, the error system (6) becomes 
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The error system (7) is a linear system with control input 

1 2 3( ), ( ), ( )V t V t V t  as functions of the error , , .x y ze e e  

There are a number of possible choices for the controls 

1 2 3( ), ( ), ( ).V t V t V t  We choose 
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Where A  is a 3 3  constant matrix. Let the matrix A  is 

chosen in the following form 
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Since eigenvalues of A  are 
2 4 22 , 4 , 9 ,a b c    where 

, ,a b c  are positive constants. It follows that , ,x y ze e e  

converge to zero as t  tends to   and hence the Lu’s 

systems (3) from (4) are synchronic. 

III. NUMERICAL SIMULATIONS 

Fourth-order Runge-Kutta integration method is used to 

solve two systems of differential Equations. (3) and (4) with 

time step size 0.1. The values of parameters in (3) are chosen 

as 1, 1, 1a b c    to ensure the chaotic behavior of Lu’s 

systems. The initial conditions of the drive system are 

1 1 1(0) 0.5, (0) 0.1, (0) 0.2x y z       and the initial 

conditions of the response system 

are 2 2 2(0) 0.5, (0) 0.9, (0) 0.4.x y z       Thus, the 

initial values of the error system are 

(0) 0.23, 0.96, 0.69.x y ze e e     Fig. 1-3 show that 

the synchronization is occurred after applying active control at 

Fig. 4 show that the state errors ( , , )x y ze e e of Lu’s systems of 

equations with the active control activated. 
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Figure 1: The state 

1 2,x x  of the coupled Lu’s systems of 

equations with the active control activated. 

 

 
Figure 2: The state 

1 2,y y  of the coupled Lu’s systems of 

equations with the active control activated. 

 
Figure 3: The state 

1 2,z z  of the coupled Lu’s systems of 

equations with the active control activated. 

 

 

Figure 4: The state errors ( , , )x y ze e e  of the coupled Lu’s 

systems of equations with the active control activated. 

 

IV. CONCLUSION 

In this paper, we first give sufficient conditions for stability of 

equilibrium points of linear feedback controls which control 

the chaotic behavior of Lu’s system to its equilibrium points. 

Finally, we give active controls which synchronize Lu’s 

system. Numerical Simulations are also given to verify results 

we obtained. 
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