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 

Abstract— We develop a new approach to the stability 

analysis of Hopfield-type neural networks with time varying 

delays in the presence of impulses. With the new approach, we 

improve and generalize some previous works of other 

researchers. We study stability of equilibrium points of 

impulsive systems which are either a generalization of those 

existing or new. This paper deals with the problem of delay-

dependent stability criterion of delay-difference system with 

multiple delays of Hopfield neural networks. Based on 

quadratic Lyapunov functional approach and free-weighting 

matrix approach, some linear matrix inequality criteria are 

found to guarantee delay-dependent asymptotical stability of 

these systems. 

 

Keywords— Hopfield neural networks; Time-varying Delay; 

Stability; Quadratic Lyapunov functional approach. 

I. INTRODUCTION 

Hopfield neural networks have been extensively studied in 

past years and found many applications in different areas such 

as pattern recognition, associative memory and combinatorial 

optimization. Such applications heavily depend on the 

dynamical behaviors. Thus, the analysis of the dynamical 

behaviors is necessary step for practical design of neural 

networks. A neural network is a network that performs 

computational tasks such as associative memory, pattern 

recognition, optimization, model identification, signal 

processing, etc. on a given pattern via interaction between a 

numbers of interconnected units characterized by simple 

functions. From the mathematical point of view, an artificial 

neural network corresponds to a nonlinear transformation of 

some inputs into certain outputs. Many types of neural 

networks have been proposed and studied in the literature and 

the Hopfield-type network has become an important one due to 

its potential for applications in various fields of daily life. The 

model proposed by Hopfield, also known as Hopfield’s graded 

response neural network is based on analog circuit consisting 

of capacitors, resistors and amplifiers. Among the most 

popular models in the literature of artificial neural networks 

(see, e.g., [1–7]) is the continuous time model described by a 

system of ordinary differential equations. The multiple models 

are still multiple linear models with different parameters, and 

neural network is used only to compensate for the modeling 

error of linear model. In this case, the nonlinear system should 
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not be very complex, and too big modeling error between the 

system and linear model is forbidden. Dynamical systems are 

often broadly classified into two categories: continuous time 

systems or discrete time systems. Recently there has been 

introduced a somewhat new category of dynamical systems 

which is neither purely continuous time nor purely discrete 

time ones; these are called dynamical systems with impulses 

(see for instance [8-11] and references therein). Stability 

conditions for various types of stability of neural networks 

problems such as complete stability, asymptotic stability, 

absolute stability and exponential stability have been studied 

extensively. One should underline the fact that stability 

properties of a neural network basically depend on the 

intended problems. For example in the solution of optimization 

problems, the neural network must be designed to have only 

one equilibrium point and this equilibrium point is globally 

stable. See more details in [12-15] and references given 

therein. 

 

In this paper, we consider delay-difference system with 

multiple delays of Hopfield neural networks of the form 

  

1

( 1) ( ) ( ( ))
m

i i i

i

u k C u k B S u k h f


      ,      (1) 

where ( ) nu k R  is the neuron state vector, 

10 mh h   , 1{ , , }i i niC diag a a , 0ic  , 

1,2,...,i n  is the constant relaxation matrix, 

iB , 1,2,...,i m  are n n  constant weight matrices, 

1( , , ) n

nf f f R  is the constant external input vector 

and 1 1( ) [ ( ), , ( )]T

n nS z s z s z  with  1 , ( 1,1)is C R  

where is  is the neuron activations and monotonically 

increasing for each 1,2,...,i n .  

The asymptotic stability of the zero solution of delay-

difference system with multiple delays of Hopfield neural 

networks has been developed during the past several years. 

Much less is known regarding the asymptotic stability of the 

zero solution of the control discrete-time system of neural 

networks. Therefore, the purpose of this paper is to establish 

sufficient condition for the asymptotic stability of the zero 

solution of (1) in terms of certain matrix inequalities. 

II.  PRELIMINARIES 

The following notations will be used throughout the paper. 


R  denotes the set of all non-negative real numbers; 


Z  

denotes the set of all non-negative integers; 
n

R  denotes the 
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n-finite-dimensional Euclidean space with the Euclidean norm 

.  and the scalar product between x  and y  is defined by 

;Tx y  
n m

R  denotes the set of all ( )n m -matrices; and 

TA  denotes the transpose of the matrix A ;  Matrix 
n nQ R  is positive semidefinite ( 0)Q   if 0,Tx Qx   

for all
nxR . If 0( 0T Tx Qx x Qx  , resp.) for any 

0x  , then Q  is positive (negative, resp.) definite and 

denoted by 0,( 0,Q Q   resp.). It is easy to verify that  

0,Q  ( 0,Q   resp.) iff 0 :    

2
, ,T nx Qx x x  R   

( 0 :   
2
, ,T nx Qx x x   R  resp.) .  

              

Lemma 1 The zero solution of difference system is 

asymptotic stability if there exists a positive definite function 

( ) : nV x R R  such that   

 
2

0: ( ( )) ( ( 1)) ( ( )) ( ) ,V x k V x k V x k x k        

 

along the solution of the system. In case the above condition 

holds for all ( )x k V , we say that the zero solution is 

locally asymptotically stable. 

 

Lemma 2 [15] For any constant symmetric matrix 
n nM R , 0TM M  , scalar /{0}s Z , vector 

function :[0, ] nW s R , we have     

                       

1 1 1

0 0 0

( ( ) ( )) ( ) ( ) .

T
s s s

T

i i i

s w i Mw i w i M w i
  

  

   
    
   

    

 

We present the following technical fact and lemmas, which 

will be used in the proof of our main result.      

III. MAIN RESULTS 

In this section, we consider the sufficient condition for 

asymptotic stability of the zero solution u
 of (1) in terms of 

certain matrix inequalities. Without loss of generality, we can 

assume that 
* 0, (0) 0u S   and f =0 (for otherwise, we 

let 
*x u u   and define

* *( ) ( ) ( ))S x S x u S u   .  

  

The new form of (1) is now given by 

 

1

( 1) ( ) ( ( ))
m

i i i

i

u k C u k B S u k h


                  (2) 

 

Throughout this paper we assume the neuron activations 

i i
s x( ) , 1,2, ,i n  is bounded and monotonically 

nondecreasing on R , and 
i i

s x( )  is Lipschitz continuous, 

that is, there exist constant 0,
i
l   1 2, , ,i n  such that     

1 2 1 2( ) ( ) ,i i is v s v l v v        1 2v v , R .   (3) 

 

By condition (3), 
i i

s x( )  satisfy 

 

     ( ) ,i i i is x l x         1,2,...,i n .           (4) 

 

Theorem 1 The zero solution of the delay-difference system 

(2) is asymptotically stable if there exist the symmetric 

positive definite matrices ( )iP k , ( )iG k , ( )iW k , and 

1[ , , ] 0i i niL diag l l  , 1,2,...,i m  satisfying the 

following matrix inequalities:  

 

               

(0, 0) 0 0 0 0 0 0 0

0 (1,1) (1, 2) (1, ) 0 0 0 0

0 (2,1) (2, 2) (2, ) 0 0 0 0

0 ( ,1) ( , 2) ( , ) 0 0 0 0

0 0 0 0 ( 1, 1) 0 0 0

0 0 0 0 0 0 ( 2, 2) 0 0

0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 (2 , 2 )

i

i

i i i i

i

i i

i i

i i

m

m

m m m m

m m

m m

m m

 
 

 

 
 
 
 
 
 








 

0,










                             (5) 

 

where             

1

(0,0) ( ) ( ) ( ) ( ))(
m

T

i i i i i i i

i

C P k C P k hG k W k


    , 

1

1 1 1 1(1,1) ( ) ( )T

i i i i i i i i iL B P k B L L L W k    ,           

1

1 2 1(1,2) ( )T

i i i i i i i iL B P k B L L L   ,

1

1 1(1, ) ( )T

i i i mi i i i im L B P k B L L L   ,

1

2 1 1(2,1) ( )T

i i i i i i i iL B P k B L L L   ,

1

2 2 1 2(2,2) ( ) ( )T

i i i i i i i i iL B P k B L L L W k    ,

1

2 1(2, ) ( )T

i i i mi i i i im L B P k B L L L   ,

1

1 1( ,1) ( )T

i mi i i i i i im L B P k B L L L   , 

1

2 1( ,2) ( )T

i mi i i i i i im L B P k B L L L  
1

1( , ) ( ) ( )T

i i i mi i mi i i i i mim m L B P k B L L L W k    ,

1 1( 1, 1) ( )i i i im m h G k    ,
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2 2( 2, 2) ( )i i i im m h G k    , 

(2 ,2 ) ( )i i mi mim m h G k  . 

 

Proof Consider the Lyapunov function  

 

1 2 3( ( )) ( ( )) ( ( )) ( ( ))V y k V y k V y k V y k   , where 

 

1( ( )) ( ) ( ) ( )T

iV y k x k P k x k , 

 

2

11

( ( )) ( ) ( ) ( ) ( )
i

m k
T

i

j k hi

V y k h k i x j G k x j
  

   , 

                                       

3

11

( ( )) ( ) ( ) ( )
i

m k
T

i

j k hi

V y k x j W k x j
  

  , 

 

( ), ( )i iP k G k , ( )iW k , 1,2,...,i m  being symmetric 

positive definite solutions of (5) and  

 

 1( ) ( ), ( ), , ( ) .my k x k x k h x k h     

 

Then difference of ( ( ))V y k  along trajectory of solution of 

(2) is given by  

 

1 2 3( ( )) ( ( )) ( ( )) ( ( ))V y k V y k V y k V y k     . 

 

 From the above inequality it follows that: 

  
1

1

1

1 1

( )[ ( ) ( ) ( )

( ) ( ) ] ( )

m
T

i i i i i i i

i

m m
T

i i i i j i i i i i

i j

V x k C P k C P hG k W k

C P k B B P k C L L x k 





 

    

 




      

        

1

1

1 1

1

( )[ ( ) ] ( )

( ) ( ) ( )

m m
T T

i i j j

i j

m
T

i i i

i

x k h LB P k B L LL x k h

x k h W k x k h

 

 



   

  





 

1 11

1 1
( ) ( ( )) ( )

i i

T
m k k

i i

j k h j k hi i i

x j hG k x j
h h     

   
    

   
   

    

 ( ) ( ),T

iy k y k                                                                        

 

By the condition (5), V  is negative definite, namely there is 

a number 0   such that 
2

( ( )) ( ) ,V y k y k    and 

hence, the asymptotic stability of the system immediately 

follows from Lemma 1. This completes the proof.             

 

Remark 1 Theorem 1 gives a sufficient condition for the 

asymptotic stability of delay-difference system (2) via matrix 

inequalities. These conditions are described in terms of certain 

diagonal matrix inequalities, which can be realized by using 

the linear matrix inequality algorithm proposed in [4]. But Hu 

and Wang [9] these conditions are described in terms of 

certain symmetric matrix inequalities, which can be realized by 

using the Schur complement lemma and linear matrix 

inequality algorithm proposed in [4]. 

IV. NUMERICAL SIMULATIONS 

Example 1 Let us consider the Hopfield-type neural networks 

with time varying delays (2) of the form 

                                                              

   

1

( 1) ( ) ( ( ))
m

i i i

i

u k C u k B S u k h


     ,                                        

 

where the matrices are 

  

 
1.9 1

C
0.3 2

i

 
  
 

,
0.9 0.3

,
0.5 0.8

iB
 

  
 

0 5  . ,and             

      

     59ih  . 

 

Using the LMI Toolbox in MATLAB, we found that the LMIs 

in Theorem 1 are feasible and  

 

0.8973 0.2315

0.2379 1.2376
iP

 
  
 

, 
1.3873 0.5697

0.3279 0.6971
iG

 
  
 

,  

 

0.7325 0.1237

0.3214 0.9668
iW

 
  
 

   

 

are the set of solutions to the LMIs(5).  

             

Therefore, the system is asymptotically stable. 
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Fig. 1 Numerical simulation of a solution for the example 1.  

 

          

 

 
 

Fig. 2  Numerical simulation of a solution for the example 1.   

 

         

 
 

Fig. 3  Numerical simulation of a solution for the example 1. 

 

 

 

For a given initial condition ( ) [1,1]Tx  , convergence 

behavior of is shown in Fig. 1. As we can see from this figure, 

the steady state of nonlinear time varying delay-difference 

system is indeed asymptotically stable. 

 

 

V. CONCLUSION 

This paper was dedicated to the delay-dependent stability of 

delay-difference system with multiple delays of Hopfield 

neural networks. A less conservative LMI-based globally 

stability criterion is obtained with quadratic Lyapunov 

functional approach and free-weighting matrix approach for 

periodic delay-difference system with multiple delays of 

Hopfield neural networks.  
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