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Abstract— The paper aims at examining the degree to 

which artificial neural networks are a suitable approach to aid 

risk management in the car financing industry. More 

specifically, we empirically compare a classic feedforward 

neural network to a recently proposed extreme learning 

machine. To that end, we employ a real-world credit data set 

from a leading car financing company in Poland is used to 

assess each classifier’s accuracy. To systematically study the 

suitability of the two methods, our study comprises multiple 

experimental factors including the type of the neural network, 

whether or not it is embedded into an ensemble learning 

framework, and strategies to mitigate class imbalance. 
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I.  Introduction 
Predictive analytics for credit scoring has received much 

attention in academic literature. Dozens of classifiers 
facilitate predicting the credit risk of a customer. The 
question is economically significant: With billions of dollars 
lend to individuals and businesses each year, an (even small) 
improvement of predictions can entail a huge financial 
premium to lenders. Many studies have examined which 
algorithms show the best performance in terms of predictive 
accuracy [1]. However, for practitioners, other features play 
an important role when assessing predicative models, such 
as ease of use, comprehensibility and computational 
resource consumption. This study aims to empirically 
compare and evaluate two different prediction models, 
namely artificial neural networks and a (more recent) 
extension called extreme learning machines, in the context 
of credit scoring data. 

In the subsequent chapter, a brief introduction into 
artificial neural networks and extreme learning machines is 
given. Thereafter, the experimental design as well as the 
employed data is explained. Finally, the results are 
presented, followed by a brief summary of limitations and 
potential further research on this topic. 
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II. Neural Networks for 
Classification and Prediction 

A. Artificial Neural Networks (NN) 
The early days of neural networks date back until the 

1940s. In 1958, Frank Rosenblatt presented a neural network 
with one neuron in the hidden layer. In the 1970s, the 
backpropagation algorithm was developed, which enabled 
the training of networks with more than one hidden neuron. 
Neural Networks consist of several layers: one input, one 
output and a number of hidden layers determined by the 
user. Each layer again consists of several elements, called 
neurons. The number of inputs in the first layer is 
determined by the number of predictors available. The 
number of output neurons is also determined by the 
prediction task, but is one in the case of a dual class 
classification problem. The number of hidden neurons is 
defined before the modelling process by the practitioner. 
They represent an activation function, which can have any 
nonlinear form (e.g. sigmoidal). These nodes are connected 
to the previous layer via synapses or, in mathematical terms, 
the parameters that determine the input of the activation 
functions. Parameters that cannot be calculated analytically, 
just like the beta parameters in linear regression, and 
therefore need to be set by the user are called meta-
parameter. For neural networks, there exists a plurality of 
meta-parameters such as the number of hidden layers and 
neurons, the type of activation function, the size of the 
learning rate etc. In order to find optimal meta-parameters 
given the available data, the common approach is to 
empirically test several candidate values. Besides, neural 
networks have H*(P+1)+H+1 (regular) parameters or 
weights to be estimated, where H is the number of hidden 
neurons and P the number of predictor variables. Since this 
number mainly depends on the number of predictors, 
complexity increases especially for data sets with high 
dimensionality [2]. The efficient estimation of parameters is 
therefore important. The backpropagation algorithm 
introduced by Rumelhart in 1986, iteratively uses 
derivatives to assign the error in the resulting output 
prediction to previous parameters, and then re-estimates the 
network considering the contribution of each parameter to 
the overall error. The potentially large number of 
coefficients can make artificial neural networks very 
complex and thus prone to overfit on the training data. 
Several methods to address this issue exist, e.g. the early 
stopping approach or penalization methods like weight 
decay. 

B. Extreme Learning Machines (ELM) 
Although algorithms such as backpropagation are 

generally considered as very efficient, slow learning rates 
and high computational resource consumption remain 
weaknesses of standards neural network approaches. Here, a 
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recent innovation from the last decade seems promising for 
mitigating these downsides. The so called extreme learning 
machines offer advantages such as a fast learning rate, easier 
implementation and less human intervention according to 
researchers in the field [3]. The main idea is basically that 
parameters at hidden neurons can be chosen randomly, 
leaving a linear problem to solve in order to find output 
weights. However, this might lead to reduced predictive 
accuracy. 

Several studies have been conducted, which come to 
mixed results. Some authors present evidence that ELMs are 
generally superior when compared to NN with 
backpropagation, based on the root means squared error 
(RMSE). It shows better generalization performance as well 
as learning speed [4]. Others measure accuracy based on 
multiple performance metrics and find that ELMs tend to 
predict with lower accuracy in most cases throughout the 
examined data sets [5]. This underlines the need for further 
empirical tests on this issue, in order to identify the 
appropriate classifier for specific areas, such as credit 
scoring in the car loan industry.  

III. Experimental Design 
In order to evaluate the performance of the two 

examined classifiers, a data set from the car loan industry is 
used to train, evaluate and finally compare the models. It 
contains real-world observations and comes with the usual 
noise, such as missing values. The whole set encompasses 
contains 32,381 samples and 81 predictors, which describe 
the borrower’s demographic characteristics as well as 
specifications of credit agreements etc. Due to the nature of 
the underlying problem, credit scoring, the target variables 
are binary indicating whether someone defaulted on a given 
credit or not. 

In the first step, the data is manipulated so that it fits the 
needs of the models developed. Neural networks, for 
example, can only handle numerical predictors, i.e. 
categorical variables have to be recoded. Additionally, 
predictors which have no or a very limited informational 
content are removed, such as those having zero variance or 
where the majority of values is missing. Avoiding the use of 
highly correlated variables and/or highly skewed 
distributions can also improve model performance. Due to 
their parametric nature, especially neural networks profit 
from the removal of uninformative predictors, since an 
increased number of dimensions require the model to 
compute an exponentially increased number of parameters. 
This introduces additional complexity and makes the model 
prone to overfitting [2]. Removing predictors can also be 
practically beneficial as it reduces computational time and 
interpretability. 

For all tests, we use the ROC and the resulting area 
under the ROC curve (AUC) as performance metric. 
Although the employment of multiple metrics is considered 
to be more appropriate for empirical evaluations, only one is 
used in order to limit the scope of this work. As the name 
indicates, the AUC measures the area under the ROC curve. 
In case the classifier is able to perfectly separate cases in a 
given data set, the area under the curve would be exactly 
one. A completely useless model, such as randomly 
assigning classes to test cases, would result in a ROC curve 
stretching from the bottom left to top right in almost a 

straight line, with an AUC of roughly 0,5. Since the ROC 
curve is a function of sensitivity and specificity, it is 
relatively insensitive to class imbalances. One of the main 
disadvantages of the AUC measure can be the reduced 
information content of it. If two compared curves cross, for 
example, none is superior, and it depends on the particular 
section of interest, which classifier is more suitable. This 
information is neglected by the AUC metric [2].  

The data is separated into training and test sample, using 
a stratified sampling technique. In a first step, meta-
parameter tuning using grid search is performed, in order to 
find the most appropriate set of meta-parameters for the 
available data. Here, a grid of candidate values is created 
and each combination of parameters empirically tested on 
the training data. If needed, granularity of the grid is 
increased to obtain the most powerful parameter 
combination. Additionally, using the functionalities the caret 
package provides, each set of candidate values was tested on 
five different bootstrap samples drawn from the training data 
set. Secondly, an ensembling technique called bagging is 
used to obtain a combination of results from multiple base 
models of the same classifier. Homogenous ensembling (all 
base models stem from the same classifier) can reduce bias 
and variance by combining the predictions of multiple 
models. As for the bagging algorithm, a new bootstrap 
sample is created for each base model in the ensemble. This 
way, diversity is introduced and variance lowered by 
manipulating the data rather than combining different 
classifiers. Hence, the offside is that bias assigned to the 
specific classifier is not reduced using the bagging approach. 
As the available data sets come in part with severe class 
imbalance, subagging, a technique employed especially in 
credit scoring frameworks, is used to mitigate the problem 
of severe class imbalances in the data sets. Subagging works 
similarly to bagging, apart from the data manipulation 
approach. Here, the data sample for the training of each base 
model is drawn by down-sampling the original data set. This 
means, for each case in the minority class, a corresponding 
sample from the majority class is drawn without 
replacement. The procedure ensures a certain predetermined 
balance among the classes [5]. The comparison of the results 
of bagging and subagging should also provide a picture on 
how neural networks and ELMs perform when class 
imbalance is present. However, since the car loan data is 
highly imbalanced, down-sampling results in a very small 
training set (roughly 3% of the original size). Therefore, a 
new, slightly altered version of subagging is deployed to 
further reduce the negative effects of an extremely 
underrepresented class in the target variable. In this version, 
the SMOTE algorithm samples a larger data set by creating 
new cases from existing ones of the minority class. This can 
be achieved by randomly selecting cases and averaging their 
attribute values. 

IV. Results 
After repeated grid search was performed, it became 

clear that better results were achieved with relatively large 
values for the number of hidden neurons and weight decay. 
Due to the large number of dependent variables, testing 
candidate values with more than 15 hidden neurons was not 
possible, as this resulted in more than 1000 weights to be 
calculated, which exceeded limit of the used nnet R 
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package. The results of the meta-parameter tuning process 
are depicted in Fig. 1.  

The same procedure was used selecting the optimal 
number of hidden neurons in the ELM and the type of the 
employed activation function. Here, the best AUC values 
were achieved with a combination of ten hidden neurons and 
a tangent sigmoid activation function, as shown in Fig. 2.  

The optimal combination for the neural network 
achieved a very high AUC value of above 0,925 within the 
tuning process, i.e. measured using the training data. Even  
sub-optimal combinations of meta-parameters yielded 
values of more than 0,9. When applied on the hold-out data, 
the model with the best meta-parameter combination 
achieved an AUC of 0,936. This indicates that neural 
networks are suitable, or perform well on this kind of data. 
As for ELM, the values are significantly lower. The best 
meta-parameter combination yields an AUC of about 0,75 
on the training data and a mere 0,635 on the test sample. 
However, the results from a single evaluation may be 
misleading. Thus, several base models are combined with 
the bagging approach and the number of combined models 
is increased in order to examine the effect of this dimension 
on performance. Furthermore, the severe class imbalance is 
taken into account with the use of different resampling 
methods. 

As outlined in the previous section, the meta-parameters 
received from the grid-search process were held constant in 
the subsequent experimental steps. For the neural network 
models combined with the bagging approach, AUC values 
of around 0,94 were achieved, relatively independent from 
the number of base models. Fig. 3 provides an overview of 
the results. Although the bagging approach is recommended 
when using neural networks as base models to account for 
classifier unstableness, the results barely improve after 
applying it. Perhaps, since accuracy is already high, the 
additional improvement gained from further optimization is 
relatively marginal. For ELM, a different picture emerges, 
as shown in Fig. 3. AUC rises from 0,635 to more than 0,9 
for a combination of 25 base models. The results are also 
more volatile. For NN it seemed performance was relatively 
independent from number of base models, but it varies 
significantly for ELM combinations with ten or less models, 
stabilizing only for 25 and 50 combinations. Actually, this is 
the expected effect for neural networks and related 
classifiers. Unstable results for single or few base models, 
and this effect being mitigated by a variance reducing 
procedure like bagging. 

Additionally, the subagging approach is used to take into 
account the severe class imbalance (about 1,3% of cases 
belong to the minority class) present in the car loan data set. 
This means, the training data is subsampled such that it 
contains all cases from the minority class and the same 
number of cases from the majority class, drawn randomly 
without replacement. This is supposed to mitigate the 
negative effects of class imbalance. Since only a very small 
fraction of cases are labeled as bad in the case of the 
available car loan data, the down-sampling procedure 
creates rather small data sets (fewer than 1000 observations) 
that are used to train the base models. This might weakens 
the positive effect of more balanced classes when it comes 
to performance. Therefore, another approach is employed 
that resembles subagging apart from the resampling method. 
Instead of drawing cases from the majority class until both 

classes are of equal size, the so-called SMOTE algorithm 
(synthetic minority over-sampling technique) is used to 
restore class balance. The algorithm produces larger training 
data sets, as it creates new “synthetic” cases derived from 
existing ones, additional to the down-sampling of the 
majority class. Fig. 4 summarizes the results of both 
approaches. For NN, subagging yields results similar to the 
bagging procedure, with AUC values close to 0,94. Again, 
the number of base models combined does not seem to have 
a significant influence on accuracy. Aggregating models 
based on SMOTE subsamples results in only marginally 
different AUC values of close to 0,93. The corresponding 
ROC curves for the ensembles with the highest accuracy can 
be found in the appendix. All in all, all deployed procedures 
only have a minor influence on the very high accuracy 
achieved by a NN classifier on the data set at hand. A 
different picture emerges when the accuracy of ELM is 
assessed with respect to the different approaches. First of all, 
the number of base models combined does seem to have a 
significant influence, since there is a significant upward 
trend visible for ELM ensembles in Fig. 3 and also a 
marginal one in Fig. 4. There is only mixed evidence on the 
effect that subagging and resampling with SMOTE have on 
the accuracy of ELM. For smaller subsamples of five to ten 
base models, accuracy is indeed higher. When 25 or more 
models are combined the effect vanishes. Potentially, the 
benefits of subsampling (or, on the other hand, the negative 
effects of class imbalance) become irrelevant the more base 
models enter the ensemble. 

 

Figure 1.  AUC values for different sets of NN meta-parameters. 
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Figure 2.  AUC values for different sets of ELM meta-parameters. 

 

Figure 3.  AUC values across different ensemble sizes for NN and ELM 

using bootstrap resampling for each base model. 

 

Figure 4.  AUC values across different ensemble sizes for NN and ELM 

using subagging and subsampling with SMOTE. 

V. Conclusions 
The conducted comparison of neural network and 

extreme learning machines actually has a clear winner. The 
NN outperforms the ELM classifier in every setup. In some 
cases, however, when ensembling techniques are used and 
the number of combined base models is ten or higher, ELM 
could achieve AUC values close to those of NN. Under 

some scenarios, practitioners may decide to trade some 
accuracy for enhanced model building time. Although this 
seems implausible for credit scoring, applications that 
require close to real-time results may benefit from the 
application of ELM. Additionally, the analysis has shown 
that, given the data at hand, the performance of NN is 
relatively insensitive to both, ensembling and resampling 
procedures. When time is an issue, it can be advantageous to 
predict with NN based on just subsamples of the available 
data and combined to an ensemble including relatively few 
base models, instead of turning to the less accurate ELM. 

This analysis, however, also comes with limitations. It 
was carried out based on just on data set and results can 
differ for new data with even similar characteristics. 
Furthermore, the assessment was based purely on the AUC 
as the metric of interest. Many studies are criticized when 
they do not take into account several performance metrics. 
Still, this analysis provides a picture on how NN and ELM 
can differ in terms of accuracy and how different 
ensembling and resampling techniques affect results when a 
severe class imbalance is present. Further research may aims 
to compare the classifiers using different data and 
experimental setups, in order to examine the validity of the 
results of this study. 
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