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Abstract—Proposing a multi-objective method is a common 

part of the process of supporting the decision-making process 

in population problems. This with the goal of motivating the 

selection of projects that help the population sector that has 

scarce water and drainage services at home. The method 

should provide a set of solutions that reflect the urgency to 

attend this population sector. Each solution is a set of 

geographical zone partitions formed by geographical units that 

fulfill the geometric compactness and homogeneity criteria, this 

homogeneity is given by the variable named "private houses 

without tap water, drainage network nor electricity services". 

We present basic theoretical aspects about the multi-

objective methodology and a method supported on the order 

theory to find the Pareto Frontier. Given that the problem 

solves a kind of partitioning that optimizes two quality 

measures, the approximation to the optimal solution is made 

with variable neighborhood search (VNS). Once we obtained 

the set of partitions, understood as non-dominated solutions, 

we can analyze the results to show the relationship between the 

variables that must be attended in the population sectors with 

limited tap water and drainage network services. The study 

case that we deal with corresponds to the Metropolitan Zone of 

the Toluca Valley (ZMVT) considering its socio-economic data 

(Agebs) product of a census. 

Keywords—grouping, multiobjective, population, pareto 

frontier. 

I.  Introduction 
The problems known as multi-objective problems are the 

ones that deal with the existence of multiple criteria to be 
fulfilled while in conflict with each other. This means that 
there are different solutions that could be chosen based on a 
series of opposite criteria. The decision making process 
(choosing a solution) resides in that according to a problem, 
the set of feasible points must be formed. Afterwards, a set 
of possible alternative solutions is tracked by any known 
technique. These possible solutions are the ones that satisfy 
the restrictions and preferences, which are executed over the 
proposed goals. 

The method that we propose in this work generates a set 
of non-dominated solutions that follows basic aspects of the 
order theory; in particular we have taken ad-vantage of the 
partial order and non-comparable orders properties with the 
end of attaining a set of solutions that form the Pareto 
Frontier [1]. Said solutions are known as territorial groups 
(elements of the partition) characterized as geometrically 
compact and population-homogeneous for the "water" 
variables originated from a group of census variables.  
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On this point, the census data are useful to solve diverse 
structuring, planning, and organization problems for the 
population. However, one of the obliged tasks in this kind of 
problem is that decision making aspect, which obeys the 
current policies, available resources and established plans 
for social developments. Generally speaking, the problems 
that employ population data are directly related with the 
territorial design problems (TD) and their basic principle is 
that these must be analyzed in small groupings and with 
strategies in accordance to restrictions that describe the 
population. In this way, the solution proposals are focused 
on generating groups (territories) that satisfy restrictions 
demanded in TD such as geometric compactness and 
homogeneity for determined variables of interest (for 
example tap water and drainage network in our case). When 
a multi-objective partition is obtained, we have a number of 
well described and non-dominated groupings available in a 
Pareto Frontier. On the other hand, the information 
contained within the groups contributes to the duty of the 
decision maker to analyze the data regarding the viability, 
relation, location and analysis of the project. At this stage, 
our proposal creates compact-homogeneous groups 
according to population census indicators related to the lack 
of water and drainage services. The geographical objects 
that form the groups are known as Agebs and they are a 
product of the housing and population census of the INEGI 
(the national institute of statistics, geography and 
informatics of Mexico) and we have chosen the census data 
of the ZMVT to study them [2]. 

II. Problem statement 
The goal is obtaining a set of groups of spatial data 

which composition is given by two components: 
geographical coordinates on the plane R

2
 and a vector of 

census descriptive characteristics. The first component 
allows obtaining a distances matrix to process the geometric 
compactness calculus, one of the objective functions to 
minimize. The description vector is used to optimize the 
second objective function and consists in minimizing the 
heterogeneity of a given census variable. The selection of 
the variables will be made over the data that relates the 
population to the tap water and drainage network services. 

According to the INEGI, their census data have allowed 
making diagnoses about sufficiency or deficit of services at 
home. These indicators have been the base to develop 
construction, expansion, improvement, financing and 
characterization strategies for houses. With the census 
variables it'll be possible to carry out studies about the 
deterioration of houses, the access to basic services that 
provide comfort, ease the domestic work and improve the 
quality of life. 
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A. Description 
There's a physical search space for the geographic 

grouping. The geographic units are finite; this means each 
element is represented by its spatial location and an array of 
descriptive variables. The problem is discrete, combinatory, 
binary-integer and the aggregation of objects is made under 
the partitioning properties. To achieve compactness, we 
form the groups such that the geographic objects are 
geographically close to each other, by using an objective 
function that minimizes the sum of the distances between 
them. To achieve homogeneity, we seek equilibrium among 
the groups according to the total group value of the census 
variable under study. Having formed the groups under 
distance minimization, we calculate its homogeneity 
because in multi-objective problems the function to optimize 
has the same domain for all the objectives [3]. This is how 
we optimize compactness and homogeneity over the same 
partition. Then the best alternative is chosen regarding the m 
objectives. Mathematically speaking, there is a set   that is a 

subset of the space    such that fi: X →Rn, i=1,…, m, where 
m objectives exist. 

III. Multi-objective 
Definition 1. A multi-objective problem (MOP) can be 

defined for the minimization case as follows: Minimize      
given that                      with feasible region 
in:                                     

The set   is called feasible region and we can say that 
the problem is subject to the restrictions          that can 
be any functions. 

For    is possible to extend the concept by means of the 
following definition. 

Definition 2. Given  ,   vectors in           if and only 
if         for every              and      if and only 
if        with      , where   is the usual order in  . 

A. Pareto Frontier 
A common option to use as a dominance relationship is 

known as the Pareto dominance defined as follows: 

Definition 3. Given the multi-objective problem, 
minimize      , where                      with 
    the feasible region. We say that a vector       is 
non-dominated or a Pareto optimum, if there isn’t a vector 
    such that     . 

Therefore, the answer to the problem of finding the best 
solutions (non-dominated solutions, however the dominance 
is defined in the technique) in a multi-objective problem is 
what is known as the solution set of the problem and the set 
of values of the objective function with a domain restricted 
to the vectors of the solution set (this is, the non-dominated 
vectors) is what we know as Pareto Frontier. 

In this regard, thinking about the set of non-dominated 
vectors logically leads to the concept of partially ordered set. 

Definition 4. The set          of Pareto efficient 
solutions (also known as set of Pareto optimums) is defined 
in the following way:                      
                                

This is the set of all the non-dominated vectors under the 
Pareto scheme. 

A concept intimately related with the Pareto Frontier is 
the Pareto optimum concept. The Pareto optimum and 
Pareto frontier are the framework to work with in the 
decision making process for multi-criteria problems [1]. 

The set of Pareto optimums for a given multi-objective 
problem is a partially ordered set (poset) under a formal 
view. In the multi-objective problems we look for the 
minimal elements in the solution space Rn seen as a poset 
with the relationship   given in definition 2. 

As we are interested in the finding partitions of   
(geographic units) that minimize the compactness and the 
heterogeneity we must make some minor adaptations to 
definitions 1, 3 and 4. For this we consider the collection of 
all the partitions                                

Let          . In our case the definition (1) is reduced 
to the following multi-objective problem: Minimize       

given that             , with feasible region in 

                                   where    is the power 
set of   and                     where   and   are the 
compactness and homogeneity functions   and    
respectively, both with a domain in   and values in  .  

We observe that the set of partitions   is generated from 
the finite set   then the image (Pareto Frontier) of the 
objective function f is finite and subsequently the Pareto 
Frontier is a discrete set. 

According to the above, our problem can be expressed as 
follows:  

First objective: Minimizing distances 

This objective has been solved departing from a mono-
objective partitioning algorithm [6]. Then, given a partition 
     for each      we randomly choose     and define the 
sum  

     ∑ ∑       

      

 

Then the number min              (1) 

minimizes the intra-classes distances between 
geographic objects . 

Second objective: Minimizing heterogeneity 

Definition 5. Let                      be a set of n 
geographical units and                   a set of census 
variables that describe the     where each variable Xi is a 
function of the set of     in    with values in the positive 

reals   . Given r intervals          
         and the 

characteristic functions        
            , 

       
    ={

       [     
]

                   

 

Then we define the participation matrix associated to the 
group of     in    with variables    and conditions 
          as the matrix           of size     where 

           
               The matrix   contains all the 
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values of the variables that participate in the respective    . 
If        we say that the variable    doesn’t participate in 

the    . 

Having obtained the variables that participate in the 
grouping, we calculate the following, to homogenize the 
groups: for the variable under study we obtain an ideal 
average according to the number of groups, let's say that the 
variable of interest is    and that its ideal average is   , this 

happens when all the groups have the same value. However 
this isn’t common in practice, then the real average for every 

group (
 

  
∑    

 
     and we subtract the ideal average, 

   
 

  
∑   

 

   

 
 

 
∑   

 

   

      
(

2) 

By minimizing this difference in the absolute value, we 
can obtain the cost of the objective function for 
homogeneity. 

Minimize                         

  : is the cost of minimizing the distances between UGs 
according to the equation (1) and   : is the cost of 
minimizing the heterogeneity of a census variable from the 
    according equation (2). Given the complexity of the 
problem, the optimization process consists of a VNS 
(descent) partitioning algorithm [4] whereas the minima is 
obtained by means of a non-comparable Pareto order 
relationship [5]. 

IV. VNS in multi-objective 
clustering 

Variable neighborhood descent (VND) is obtained if all 
neighborhoods generated during the search process are 
explored completely [4].  

Algorithm 1. Procedure VND (P, x, kvnd) 

1 Select a set of neighborhood structures Nk: S → 

P(S), 1 ≤ k ≤ kvnd; 

2 Set stop = false; 

3 repeat 

4 Set k = 1; 

5 repeat 

6 x′ = BestImprovement(P, x,Nk(x)); 

7 if (f(x′) < f(x)) then 

8 x = x′, k = 1; // Make a move. 

9 else k = k + 1; // Next neighborhood. 

10 endif 

11 Update stop; 

12 until (k == kvnd or stop); 

13 until (f(x′) ≥ f(x) or stop); 

14 return x. 

The advantage of our mechanism to find better 
compromise solutions resides in the way that the grouping is 
solved: it returns a diverse set of partitions by using VNS. 
On the other hand, to find the subset of efficient and non-
dominated solutions the mechanism evaluates each solution 
that is generated checking if it is non-dominated and non-
comparable.  

  Each partition is represented by a pair of solutions 
composed of compactness and homogeneity (C, H). These 
solutions are checked under a variant of the Pareto 
dominance with the goal of obtaining a subset of non-

dominated and non-comparable solutions (C, H). This subset 
is the Pareto Frontier. 

The implicit partitioning must establish that every group 
is compact and that the sum of a certain population variable 
is as homogeneous as possible by means of a bi-objective 
function. The approximation to the optimum is made by 
combining VNS with a method supported on the order 
theory to find a set of non-dominated and non-comparable 
solutions through the minimal points that form the maxima 
set [5]. Finally, the algorithm process is described in an 
informal way as long as we consider that the initial solution 
is obtained considering a single objective (compactness) [6] 

Algorithm 2. VND with Pareto Frontier filter 

Procedure VND (P, x, kvnd) 

1 Select a set of neighborhood structures Nk : S → 

P(S), 1 ≤ k ≤ kvnd; 

2 Set stop = false; 

3 repeat 

4 Set k = 1; 

5 repeat  

6 x′ = BestImprovement(x, LSit); 

7 HandleMinimals(x′); 

8 if (f(x′) < f(x)) then 

9 x = x′, k = 1; // Make a move. 

10 else k = k + 1; // Next neighborhood. 

11 endif 

12 Update stop; 

13 until (k == kvnd or stop); 

14 until (f(x′) ≥ f(x) or stop); 

15 return x 

The BestImprovement procedure takes the current 
solution x and the number of iterations LSit as input and 
chooses the best improvement found during the iterations 
made in this local search. Our neighborhood is defined by a 
pivot centroid which will remain in its position until the 
neighborhood is changed. A random exchangeable centroid 
will be chosen per iteration of the local search, and it'll be 
replaced by a randomly chosen non-centroid UG. After the 
exchange we reassign the UGs, each to their closest centroid 
to keep compactness. During this aggregation process we 
add the distances between the UGs and their centroids. For 
the homogeneity we add the value of the census variable for 
each UG and the total of both is returned. Besides the 
number of iterations we have included another stopping 
criterion for the local search: If the new solution generated 
in any iteration dominates the input solution, according to 
our Pareto order relationship, then the local search ends 
returning this non-dominated solution.  

The procedure "HandleMinimals" is described next. 

Algoritmo 4. HandleMinimals(x) 
1 if(sizeOf(minimals)>0) 

2  for(i = 1) to (i == sizeOf(minimals)) 

3  if(isDominated(minimals[i], x)) 

4   remove(minimals, i) 

5   add(minimals, x) 

6   break for 

7  else 

8   break for 

9  end if 

10 end for 

11 end if 

12 add(minimals, x) 

13 return minimals 

The algorithm HandleMinimals implements our Pareto 
order relationship to determine if the new solution generated 
"x'" dominates any of the current members of the minimal 
solutions list, if it does, the solution "x'" will replace the 
solution it dominates in the minimals list. If the list is empty, 
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"x'" is simply added to it. The final step returns the minimals 
list. 

On this point, the non-dominated elements possess 
properties such as the maxima set (set of minimals or 
maximals) [5]. The properties of this set have been 
important to identify the non-dominated solutions in our 
method. 

V. VNS in multi-objective 
clustering 

We focus in offering a set of groups of population 
related to tap water and drainage network services. These 
groups are formed by spatial objects known as Agebs. Each 
Ageb consists of a vector of variables, which represent geo-
statistical data from a census.  

An important factor is making a decision about the 
viability of assigning resources to vulnerable population 
sector. We have chosen the population with partial tap water 
and drainage network services as study case. This means 
that the variables described on the list below are the ones 
that participate in the grouping and to make sure all of the 
Agebs are involved; we have filtered the variables with 
values between 0 and 100%. 

 Assuming that there's a government program to support 
this population sector, they need a set of groupings that 
show the distribution of this population regarding the 
following census variables, which are strongly related with 
each other: 

Z119 Total of inhabited houses. 

Z120 Inhabited private houses. 

Z137 Private houses with drainage connected to the septic 
tank, ravine, crack, river, lake or sea. 

Z138 Private houses without drainage network service. 

Z140 Private houses with tap water inside the building. 

Z141 Private houses with tap water within the land. 

Z142 Private houses with tap water available by 
transportation (public water tap or from another home) 

Z143 Private houses that only have tap water and drainage 
network services. 

Z144 Private houses that only have drainage network and 
electricity services. 

Z145 Private houses that only have tap water and electricity 
services. 

Z146 Private houses that have tap water, drainage network 
and electricity services. 

Z147 Private houses that don't have tap water, drainage 
network nor electricity services. 

Z136 Private houses with drainage connected to the public 
network. [2] 

A. Application description 
The model we have described has been applied to a 

socio-economic problem, where we assume that 8, 32, 64 
and 100 compact groups are required where the Agebs are 

very close to each other to ease the transportation implicit in 
social welfare programs that will attend the population with 
neglected water related services. The groups must be formed 
by Agebs with values on their drainage network and tap 
water services variables. The homogeneity we want is over 
private houses that don't have tap water, drainage nor 
electricity services (Z147).  

The VNS parameters are set to 15 local search iterations 
and 2 runs over the whole set of neighborhood structures.  

The homogeneity value was stable for all the tests and 
the execution time has an average of 60 seconds.  

In each graph the x axis represents the compactness 
versus the y axis which is the homogeneity. If the decision 
maker is interested in sacrificing compactness or 
homogeneity he must choose a solution from the marked 
points. The values in each table associated to the graph are 
the minimum costs for both objectives. With the goal of 
testing that the solutions obtained with our method 
correspond to non-dominated solutions, we have employed 
Nodom, a software that filters the non-dominated data from 
an input vector [7].  

We show in figure 1 and table 1 an example for 32 
groups (g). The first column in table 1 belongs to the cost of 
the Homogeneity function (H) and the second one, to the 
compactness cost (C). These solutions are the set of non-
dominated solutions that our algorithm generates, which we 
have improved. In a previous work we could see some 
dominated solutions close to the Pareto Frontier [8]. 

Finally, we have gathered the Pareto Frontiers (PF) from 
different tests into one graph. We used over 14 variables 
related with tap water and drainage network services, trying 
to balance the homogeneity in the variable Z147 (Private 
houses that don’t have tap water, drainage network nor 
electricity). 

TABLE I.  11 SOLUTIONS 

64194 634.9375 

1464701 451 

817700 514.5625 

897517 504.5625 

816472 562.5625 

773141 629.75 

797208 570.125 

980917 492.5625 

1013870 489.375 

787619 580.125 

793255 570.5625 
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Figure 1.  FP  for 32 g 

 

Figure 2.  Blues  8g, greens 32g, reds 64g, stars  100g 

VI. Conclusions 
Our contribution is a partitioning around the medoids 

algorithm in a multi-objective context with VNS that 
surpasses a previous algorithm even though it reutilizes core 
procedures. However, a diversification in the neighborhood 
structures has been implemented resulting in a Pareto 
Frontier with a better distribution of solutions along the 
frontier line. Furthermore, our algorithm has interesting 
properties because it produces the Pareto Frontier by means 
of a reliable method, analogous to the properties of the 
minimals in a Hasse diagram, where these minimals are non-
dominated and non-comparable points. The efficiency of the 
minimal solutions that our algorithm generates is tested 
when the unfiltered solutions are fed to Nodom, a software 
that filters non-dominated solutions. 

On the other hand, the majority of grouping algorithms 
with a single optimization measure can work well but only 
for a certain amount of data, or some lack robustness 
concerning the variations in the cluster form and uniformity 
besides the proximity to the optimum. 

In this work, we have proposed an alternative approach: 
simultaneously optimizing two objectives with VNS for a 
clustering problem for spatial data, however, our algorithm 
can group other kinds of data. 

We have shown that our approach offers robustness in 
the selected solutions that form the Pareto frontier but we 
still need to deal with a problem that concerns many multi-
objective researchers: the real Pareto frontier. 
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