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Abstract— Natural light is an important factor that needs to 

be considered in the implementation of an automatic sprayer 

system. This paper evaluates the scalability of real time specific 

weed recognition system using histogram analysis, and its 

comparison with two dimensional weed coverage rate (2D- 

WCR), and Angular Cross Sectional Intensities (ACSI) 

classifiers based on the variation in the natural lighting 

conditions to encompass the cloudy and bright shiny outdoor 

environment. A large image dataset of 1500 images was used as 

compared to the previously used image datasets (200-1200 

image datasets). The dataset images are further subdivided 

based on different lighting conditions and is termed as normal, 

dark, and bright. The proposed classifier was applied to 

classify these images into broad and narrow class for real time 

selective herbicide application using a single constant 

threshold. The analysis of the results shows over 94 percent 

weeds detection and classification accuracy (broad and 

narrow). The results confirmed the scalability of the proposed 

classifier to encompass dark cloudy as well as bright light 

outdoor conditions on the same day of application, while 

maintaining the same accuracy and 22% - 30% better 

classification accuracy than Two-Dimensional Weed Coverage 

Rate and Angular Cross Sectional Intensities classifiers. 

Keywords—Image Processing, automatic sprayer system, 

weed classification, histogram analysis 

I.  Introduction  
Weed is an unwanted plant that grows in undesirable 

place and competes with the desirable plants for food, 
shelter, and water. Herbicides are used to overcome these 
unwanted plants. Herbicides has greatly improved the crop 
production by eliminating weeds, but the excessive usage 
has an adverse effect on the water reservoir, environment, 
and on the bee colonies. Herbicides are applied uniformly to 
the whole field without considering the weed density. 
Weeds are often patchy rather than distributed in the whole 
field [6, 7]. 

Herbicides could be reduced if applied based on the 
density of the weeds. This practice would reduce the overall 
cost of the herbicides and in turn would result lower the 
adverse effect on water reservoir and the environment. This 
new method is termed as selectively spraying, spot spraying, 
or intermittent spraying [8]. 
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The purpose of this paper is twofold: firstly is to apply 
the proposed histogram analysis classifier as in [1] to a 
dataset of 1500 images. This dataset is much larger than 
previously used in the studies as in [1, 13, 17, and 23] to 
distinguish individual weeds into broad and narrow weeds. 
The dataset is further subdivided into three sub datasets. The 
first sub dataset is termed as Normal and is taken in the 
daylight outdoor condition. The second sub dataset is termed 
as Bright and is 20 percent brighter than the Normal image 
sub dataset. The third sub dataset is termed as Dark and is 
20 percent darker than the Normal image sub dataset. The 
three image datasets are different in light parameter. The 
main reason of difference in light parameter is to encompass 
dark and cloudy as well as the shiny daylight outdoor 
conditions, and to evaluate the effectiveness of the 
histogram analysis without any preprocessing step which 
consumes considerable amount of CPU time during real 
time outdoor application as used in [23]. A sample broad 
class weed image from the three image sub datasets is 
shown in Figure 1. Secondly, the proposed histogram 
analysis classifier is compared with 2D-WCR, and ACSI 
classifiers on the same dataset of 1500 images for accurate 
classification.  

II. Related Work 
The main focus of research in this field is to control 

weeds with less herbicide. This will in turn reduce the 
production cost as well as protect the environment and the 
underground water reservoir. One simple method is as 
proposed in [24] for banding herbicide spray on crop rows, 
while cultivate between the rows. 

In the recent years, several methods and algorithms have 
been developed for real time selective herbicide system as in 
[1, 12-22]. Two main systems have developed for the 
implementation of these methods and algorithms that 
operates on vehicle and suitable for field condition. One 
system uses the spectral reflectance approach. In this 
approach optoelectronic sensors are used that measure the 
light reflected at special wavelengths. Although this method 
is good for discriminating plants and soil, but discrimination 
between weeds and crop cannot be accomplished using this 
method. Reflection at different wavelengths was measured 
for the discrimination among weeds, crops, and soil [10, 11]. 
The testing of this spectral analysis systems have been 
reported only in [3]. The second system uses image analysis 
approach which uses a CCD camera along with image 
analysis software for detecting and discriminating weed and 
crop plants based on their color, shape and texture features 
[2, 4]. The algorithms and methods used in this system 
efficiently classify weeds and crops in real time environment 
as in [1, 12-22].  
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Figure 1.  (a) Normal Image (b) Bright Image, and (c) Dark Image 

A system that could make use of the spatial distribution 
information in real-time and apply only the necessary 
amounts of herbicide to the weed-infested area would be 
much more efficient and minimize environmental damage. 
Therefore, a high spatial resolution, real-time weed 
infestation detection system seems to be the solution for 
site-specific weed management [9].   

III. Material and Methods 

A. Hardware Design 
The concept of the automated sprayer system is shown in 

Figure 2, which includes digital camera, Central Processing 
Unit (CPU), and Decision Box controls two DC pumps for 
spraying. The Normal image dataset was taken at an angle 
of 45 degrees with the ground. This angle orientation was 
chosen among many other angles, because using this 
method, the long, narrow area in front of the sprayer could 
be captured with high resolution without increasing the 
image size. Agriculture fields are selected for this type of 
study. 

The images are given to Central Processing Unit. The 
Decision Box is connected to the Central Processing Unit 
through a parallel port which ON or OFF the corresponding 
DC pump, based on the type of image processed by the 
Central Processing Unit. The results in the lab were obtained 
using Intel Core i5 with 1.80 GHz Microprocessor and 4 GB 
RAM [1]. 

 

 

 

 

 

 

B.  Software Development 
The software is developed in Microsoft Visual C++ 6.0. 

A  Graphical User Interface (GUI) is developed that shows 
the Original image, processed image, and the histogram. All 
the three sample image data sets have a resolution of 240 
pixel rows by 320 pixel columns.  

IV. Methodology 

A.     Image Pre-processing 
In weed detection methods, the images are processed in 

two steps (i) Segmentation of the vegetation from the soil 
and residue and (ii) detection of the vegetation pixels that 
represents the weeds. [27]. A vegetation index plays an 
important role and is used as a first step in weed detection 
process. The authors in [26] indicated that weeds in field 
images must be carefully segmented; otherwise the feature 
extraction will yield unreliable results from analyzing soil 
and weeds [9].  Different vegetative indices have been used 
in the literature. The authors in [25], were the first who 
developed and tested five color vegetation indices using 
chromatic coordinates r, g ,and b to distinguish plant 
material from bare soil, corn residue, and wheat straw 
residue. The five color vegetation indices were  ( r-g, g –b, g 
– b, r – g, and 2*g – r –b) [25]. 

In these five indices Woebbecke found that excess green 
vegetation index (ExG = 2g  - r -b) and modified hue were 
most efficient in providing a near-binary intensity image 
out-lining a plant region of interest ,but modified hue were 
computationally expensive than excess green vegetation 
index.  

Color images were taken from the field. Three arrays 
were defined to store red, green and blue colors of RGB 
image in their respective arrays. To distinguish weeds from 
background objects in a color image, a color segmentation 
image-processing step using Excessive Green (ExG) is 
conducted where the background has been segmented from 
plants for feature extraction. 

ExG = 2g – r- b 

 

if( ExG > Threshold) 

{ 

        

                        

                        

} 

else 

                                 

The green pigment of the green part computed is 
compared with the threshold value which separate soil and 
residue from the plant as a preprocessing step. 

B. Classification of Images  
In classification phase, the classification of weeds into 

broad and narrow weeds is based on histogram analysis. The 

Figure 2. Automatic Sprayer Control  

System [28]. 
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histogram of a digital image having gray levels in the range 
[0, L-1] is a discrete function        such that  

        ∑  

 

   

                                                                

where rk is the k
th

 gray level and np is the number of 
pixels in the image having a gray level rk. After histogram 
computation, width of histogram (W) is computed with the 
restriction: 

              

Where T1 and T2 are the two histogram threshold 
values. 

Next the number of peaks (NP) is calculated with the 
following restrictions: 

                       

Where T1, T2, and T3 are the threshold values. 

The values of W, and NP will then classify the weeds 
into broad and narrow weeds [1,5]. 

2D-WCR [13], and ASCI [17] are applied to the image 
sub datasets for classification into broad and narrow weeds. 
Each classifier uses a different threshold value for the 
classification of each sub dataset. Then the three sub 
datasets were combined into one large dataset and the three 
classifiers were applied for classification using a constant 
threshold value.   

V. Results and Discussion 
Figure 3 and Figure 4 shows weed classification into 

broad and narrow classes. Figure 3, shows the correct 
classification of Normal, Bright, and Dark datasets into 
narrow weeds using the histogram analysis classifier [1]. 
Similarly, Figure 4 shows the correct classification of 
Normal, Bright, and Dark datasets into broad weeds, using 
the histogram analysis classifier [1]. 

 

 

 

Figure 3.  Results of (a) Normal, (b) Bright, and (c) Dark narrow type of 

weed 

 

 

Figure 4. Results of (a) Normal, (b) Bright, and (c) Dark broad type of 

weed 

Histogram analysis, 2D-WCR, and ASCI gives 100% 
accuracy to detect the presence or absence of weed cover in 
the entire three image datasets. For areas where weeds are 
detected, the results of classification of these three methods 
for normal, dark, and bright image datasets are different. 
Each dataset contains 500 images, having 250 images from 
narrow and 250 images from broad class, and a total of 1500 
images with different weed densities of both types. Each 
classifier uses a separate threshold value for each sub dataset 
(Thresh1, Thresh2, and Thresh3). These threshold values 
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differ significantly across the three image sub datasets. The 
results are shown in Table 1 

The average accuracy of the three sub datasets (Normal, 
Dark, and Bright) of Histogram analysis is better by 1-10% 
as compared to 2D-WCR and ASCI for broad weed and 
(2%- 24%) for narrow weeds. 

TABLE I. RESULTS OF CLASSIFICATION USING HISTOGRAM ANALYSIS, 2D-
WCR, AND ASCI CLASSIFIERS FOR THE THREE IMAGE DATASETS 

WITH DIFFERENT THRESHOLD VALUE. 

Classifiers Threshold 
(different for 
each image sub 
dataset 

 Percent Accuracy (%) 

 

 

 

 

Histogram 
Analysis 

[1] 

          
Weed     
Type                    

 

Dataset 
Type 

Broad Narrow Little 
Weed 

Thresh1 Normal  98%   98% 100% 

Thresh2 Bright  98%   98% 100% 

Thresh3 Dark  97%   98% 100% 

 

2D-WCR 
[13] 

Thresh1 Normal 89% 73% 100% 

Thresh2 Bright 86% 74% 100% 

Thresh3 Dark 88% 75% 100% 

 

ACSI [17] 

Thresh1 Normal 97% 96% 100% 

Thresh2 Bright 98% 98% 100% 

Thresh3 Dark 96% 95% 100% 

 

In further experiments, the three classifiers were applied 
to the combined image dataset of 1500 images. Each 
classifier uses a single constant threshold value (Thresh1) 
for the classification in order to reduce the computational 
cost of dynamic threshold calculation. The results are shown 
in Table II. 

The accuracy of Histogram analysis is better than 2D-
WCR and ASCI by 21% to 30% for broad weed and by 23% 
to 30% for narrow weeds. The average accuracy of 
histogram analysis for overall classification as compared to 
2D-WCR and ASCI is better by 22% to 30% as shown in 
Table II. 

 

 

 

 

 

 

 

 

 

 

TABLE II. RESULTS OF CLASSIFICATION USING HISTOGRAM ANALYSIS, 2D-
WCR, AND ASCI CLASSIFIERS FOR COMBINED IMAGE DATASET 

WITH SAME THRESHOLD VALUE. 

 

Conclusion 
Weeds are harmful to plants and needs to be controlled 

through herbicides. Herbicides in excess are also harmful to 
the soil and the environment. To remove weeds with the 
minimum possible application of herbicides, real time weed 
control machinery is important. 

A real time specific weed classifier is developed in [1], 
are tested on a large dataset of 1500 images with high 
variation in light parameter in order to reduce the 
computational cost of preprocessing step and dynamic 
threshold computation. This classifier was then compared 
for accuracy with 2D-WCR, and ASCI classifier for soil 
detection, weed classification into broad and narrow weed 
types. The classifier shows an effective and reliable 
classification of images taken by a video camera under 
extreme lighting conditions, and outperformed 2D-WCR 
and ASCI classifier using the same threshold for the whole 
image dataset. The results verified that the classifier is 
scalable to adapt to the extreme variation of outdoor 
conditions during real time application. 
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