

110

Proc. of The Third Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-064-4 doi: 10.15224/ 978-1-63248-064-4-23

Exploring the SQL injection vulnerabilities of .bd

domain web applications
 Delwar Alam, Tanjila Farah, Md. Alamgir Kabir

Abstract—Web applications have been proven most efficient

by providing easy access to services such as online education,

banking, reservation, shopping, resources, and information

sharing. Though the use of web applications is a comparatively

new concept, various government and private organizations of

Bangladesh have started getting accustomed to it. Bangladesh

government has also taken initiative to support web based

services and ensure their security and reliability. Most of the

web applications of Bangladesh are registered under .bd

domain. The global accessibility and sensitivity of the

information’s of web applications make them a target for web

attackers. However the security issues of the .bd domain web

applications are not addressed. No through study has been

done so far on the existing vulnerabilities of these web

applications. Hence the web applications are vulnerable to

basic attack such as Structured Query Language injection

(SQLi). This paper presents an evaluation of existing User

input based SQLi vulnerability of web applications of .bd

domain using black box penetration testing approach. The tests

are performed manually. The data collected are analyzed to

provide a guideline for website administrators.

Keywords—component, formatting, style, styling, insert (key

words)

I. Introduction
Web applications provide friendly interface and easy

accessibility to the internet users. Various companies have

launched web applications of their products to make their

merchandises available worldwide [1]. With this increasing

popularity, ensuring the security of these applications are

also becoming a major concern. Web applications are

dynamic as they are associated with back-end database and

allow users to store and retrieve real time data [2]. However

this also makes the database accessible by the intruders who

intend to access database to retrieve unauthorized sensitive

information and perform malicious activity through them.

This results in security violations including identity theft,

Delwar Alam

Daffodil International University
Bangladesh
delwaralam@gmail.com

Tanjila Farah

North South University

Bangladesh
tanjila.farah@northsouth.edu

Md. Alamgir Kabir

Daffodil International University
Bangladesh
alamgir.swe@diu.edu.bd

fraud, and control and corruption of web services [1], [9].

Database oriented web application are vulnerable due to

design flaws such as: lack of input sanitization, unnecessary

construction of dynamic queries, and unnecessary access to

information [3]. Attackers inject unauthorized input or

malicious code by manipulating design flaws to get

unrestricted access of the web application database and thus

the user data [4]. There are various exploitation techniques

available. Structure query language Injection (SQLi) and

Cross site scripting (XSS) are two of the most used

exploitation [5]. Over the past few years there has been

plenty of research in these fields of web application security,

their types and vulnerabilities [[6], [8]. There are various

sub types of SQLi and XSS [7]. In this paper we present an

assessment and analysis of User-input based SQLi technique

implemented on the web applications of .bd domain. We

have considered two subtypes of SQLi: POST() based and

GET() based methods for this research [10]. For analysis

purpose the data is divided based on GET() and POST()

method. This paper is organized as follow, we start by

describing SQL, various SQLi and GET() and POST() based

SQLi. In section 3 we explain the research methodologies.

In section 4 we describe the steps of SQLi we used during

the research. Section 5 we discuss our finding of the

research. And then we conclude in section 6.

II. Background
Web applications operate by user writing the URL/address

of the application in the browser. The browser carry the

URL to the web server connected to the database. Between

server and database is firewall that blocks any unauthorized

requests to get connected to the database as shown in Figure

1. Most of the requests coming through browsers are

allowed to bypass the firewall. These requests are known as

http request. Once the browser provided request passes the

first firewall the web servers use the request to form a SQL

query. This query passes the second firewall to reach the

database and retrieve information requested by the user. The

same process is used by the adversaries to inject malicious

input to the database and retrieve unauthorized data.

Figure 1. Connect to the database to retrieve data

111

Proc. of The Third Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-064-4 doi: 10.15224/ 978-1-63248-064-4-23

A. SQL
Structured Query Language is a programming language used

to communicate and control databases connected to web

application. Once the users request reaches the web server, it

dynamically forms a SQL query based on the users input.

For example, consider a web application, “www.webpage.

com” shown in Figure 2.

Figure 2. Web application URL

To retrieve the about us page from the web application:

webpage.com, an id=2 is sent to the web server. The server

then builds a SQL query adds the value 2 in the query as

shown in Figure 3. This query is then sent to database. The

id is matched in the database table where the page

information and location of about us page are saved as

shown in Figure 1. Once the id is matched the requested

page is returned to the browser. The basic SQL queries are

authorized for the users to perform on a database are: select,

update, insert, and delete for retrieving, updating, adding,

and deleting information to and from database.

Figure 3. The query for a specific page request

B. Injection mechanism
Based on the processing of user supplied data various

mechanisms of SQLi can be implemented. Within the

available SQLi techniques the most used mechanisms

include [2]: user input based injection, second order

injection, cookie based injection, server based injection,

authentication bypass, and remote code execution. For this

research user input based injection has been used.

C. SQLi
Structured query language Injection (SQLi) is a web attack

used to gain unauthorized access to the web applications.

This code based technique is used to exploit the

vulnerabilities of the database through the interface of the

web applications and servers. Vulnerability occurs when the

user input parameters are not verified before forming the

query and sending to the back-end database servers. SQLi

technique uses parameter manipulation to gain access to the

web applications system [4]. Parameter manipulation

implies inserting unauthorized or wrong information as

input in the query for database to generate error messages.

Attackers find a parameter in the URL of web application

that is passed directly to database. Malicious SQL command

is embedded as content in to the parameter to be forwarded

to database. For example shown in Figure 4 single quote and

minus, minus, and plus signs in the URLs data section as

malicious command. Single quote is used for query splitting

and minus, minus, and plus signs are used for query joining.

These values are discussed in detail in section 4.

Figure 4. Inserting unauthorized character through user input

These error messages reveal information about query

structure server uses to connect to the database. Attackers

use these information‟s to build malicious query.

In the browser Hypertext transfer Protocol (HTTP) is used

to retrieve data from web server. HTTP uses two methods:

GET() and POST() to enable communication between user

and web server [10]. The sever uses these inputs and get or

post based method to build SQL query and retrieve data

from the database. SQLi is implemented by manipulating

HTTP methods [7].

1) Get based SQLi: In this method user inputs are sent as

URL‟s data value as shown in Figure 4. In the URL the

web application address and the user information are

separated by a question mark (?) as shown in Figure 2.

All the values inserted by the user usually appear in the

browsers URL box [9]. SQLi queries are also written in

the browser URL as shown in Figure 4.

2) Post based SQLi: This method is used to retrieve

information from user login section of a web

application. This method transfers information via a

HTTP headers function called QUERY STRING [9].

The values sent through the header function are stored

in $POST array. The query for post based method is

shown in Figure 5. SQLi entered in these fields to find

the vulnerabilities is shown in Figure 6.

Figure 5. Post based SQL query

Figure 6. Post based SQL injection queryResearch Methodology

112

Proc. of The Third Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-064-4 doi: 10.15224/ 978-1-63248-064-4-23

This is an ongoing study. The research methodology

includes data collection and vulnerability checking and

analysis. The data collection and vulnerability checking

steps are consecutive. Once all the vulnerabilities are

assessed, the data analysis phase takes place.

D. Collecting data
To detect the vulnerable web application of .bd we have

searched in google.com using several filters. The most used

filter keywords are given in Table I.

TABLE I. FILTER KEYWORDS/ GOOGLE DORK FOR

SEARCHING WEBSITES

Keyword

inurl:.php?id=

inurl:news.php?id=

inurl:index.php?id=

inurl:article.php?ID=

inurl:Page?id=

inurl:gallery.php?id=

E. Vulnerability checking and data
analysis

After finding the target we have used step by step SQLi

explained in section 4 to manually check the level of

vulnerabilities in these websites. The level of vulnerability

means the amount of data that could be retrieved from SQLi.

For data analysis we have grouped the vulnerable web

applications based on get and post based SQLi. Then we

analyzed the data-set based on the GET and POST method.

III. Steps of SQLi
In user input based SQLi parameter splitting and balancing
technique are used to inject vulnerable input value in the
URL or user input field. As explained in section 2 SQLi uses
get and post based method for injection. The steps of SQLi
are mostly the same in both methods except get based SQLi
is performed in URL section of the browser and post based
SQLi is injected in user login section.

A. Splitting the query
The first step of SQLi is splitting the query to generate error
messages. In this step the query is divided into two parts by
inserting values in the data part of URL. For example, A

single quote (’) character is used in SQL statement to
designate start and end of a string value. In Figure 7, input in

the id variable is 2’. When this input is inserted into query
the single quote after value 2 completes the single quotation
pair as shown by the arrow in Figure 7.

Figure 7. Splitting the query

This corrupts dynamically generated SQL query and

generates error messages as shown in Figure 8 [2]. The error

message indicates a MySQL server is present. It also reveals

the syntax of the of the SQL query. The characters (\’)

indicates that the SQL query is ended with a single quote (’).

Figure 8. Error after splitting the query

There are various SQL character vulnerability exists. The

characters used in this research are shown in Table 2. Not all

of them are usable for all web applications. It depends on the

implementation of web application.

TABLE II. EXPLOITABLE SQL SYNTAX

SQL Syntax Symbol

One Single Quote ’

One Single Quote with bracket ’)

One Double quote ”

One Double Quote with bracket ”)

An exception of query splitting syntax: The SQL syntaxes

from Table 2 are not always usable for splitting a query. In

such situation, a backslash (\) could be used to find the

query syntax of the server as shown in Figure 9. Using

backslash in the URL or login box will return an error

message. In the error the character after the backslash is the

syntax used by the web server to generate query.

Figure 9. Using backslash to find query code

B. Joining or balancing the query
In the first step of SQLi, the query is broken and an error

message is generated. The next step is to fix the error. While

an error exits the database won‟t reply any of the queries.

Two techniques are used to fix the error: Query Join and

Query balance. The syntaxes mostly used for query joining

and balancing are shown in Table 3.

TABLE III. FEW SYNTAX‟S FOR QUERY JOINING AND

BALANCING

Method Syntax

Query Fix

GET

--+

--(space)(any character
string)

POST #

Query Balance

OR ’ 1

OR ‘1’ =’1

An example of query joining process is shown in Figure 10.
In the URL after the single quote, a space, minus, minus,
and plus (--+) character strings are added. The signs should

113

Proc. of The Third Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-064-4 doi: 10.15224/ 978-1-63248-064-4-23

be together with no space. This is a query joining syntax.
The character string -- is used in for commenting strings and
+ designates space. The syntax of this statement would
result in commenting out all the string after query joining

syntax. As shown in Figure 10, the query “ ’ LIMIT 0,1” ”
will be commented out by the query joining syntax. Thus the
database will execute the query written before the query
joining syntax. There are other query joining syntax‟s such
as - - space and then any string. This query won‟t work
unless a string is added after the space. Once the query is
joined the web application in the browser will be back to its
original form with no error messages. In post based method,
for Query joining pound sign (#) is used. For balancing the
query the same syntax is used get based method.

Figure 10. Joining the query

Both get and post based methods use same syntax for

injection in query. After Splitting and joining/balancing a

query, injection code is written between single quote and

joining or balancing syntax as shown in Figure 11. Any

query written here would be executed in the database. For

this research we have used a specific set of SQL injection

steps. These steps are as follow:

Step 1: Order by query is used to find out the number of

columns in the databases table. As shown in example

between the query splitting and joining syntax order by 4 is

written in the URL. The order by syntax checks if the value

added after the order by syntax matches the column number

in the database table. For the example in Figure 11, this

value is 4 indicating that the database table has 4 columns.

Figure 11. Query to find the number of columns in the specific page

A trial and error technique is used to determine the exact

number of columns. If the value doesn‟t match the number

of columns exists in the database an error message would be

generated as shown in Figure 12. The error message

indicates that column 5 doesn‟t exist in the database.

Figure 12. Error due to wrong order number

Step 2: Once the numbers of columns are retrieved union

select or „union all select‟ query is used to find the

vulnerable columns in the database table. Using “union

select 1,2,3,4” syntax, the numbers of vulnerable columns

are inquired as shown in Figure 13. The numbers from 1-4 is

listed in the syntax because in previous step we found the

number of columns in database table is 4. Executing this

query would print the exact numbers of vulnerable columns.

In this query, value of the parameter has to be changed to -2

as shown in Figure 13. This is known as nullifying the

original query. This value does not exist in the database.

Any false condition could also be used to nullify.

Figure 13. Query to find the vulnerable columns in the specific page

Step 3: After finding the number or numbers of vulnerable

columns, the union select query is reconstructed. In the

place of any of the vulnerable column number (which is 3 in

Figure 14), Group concat (table name) written to print the

names of all tables in the database. These names are

retrieved from information schema database. Information

schema is a default database in SQL server and it stores all

the information‟s about all the databases in the server. The

database() function is used to indicate the current database.

Figure 14. Query to find the table names in the database

Step 4: Once the table names are retrieved the query is

reconstructed to find the columns names. The query syntax

for retrieving column names in a user table is shown in

Figure 15.

Figure 15. Query to find the column name in a specific table

Step 5: The column names retrieved from previous step are

used to retrieve the data stored in these columns. we have

assumed the columns id, username, password exists in users

table for our example. The reconstructed query syntax is

shown in Figure 16.

Figure 16. Query retrieving specific user data from databases user table

There are various automatic tools to implement SQLi [9],

[8]. As we have used manual testing approach. These steps

have theoretical similarities with existing tools. However,

exact order of these steps might vary.

114

Proc. of The Third Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-064-4 doi: 10.15224/ 978-1-63248-064-4-23

IV. Result and Discussion
In this paper we have evaluated 600 web applications of .bd

domain. Among them 400 web applications are found and

60 web applications are vulnerable to post based SQLi. The

data that we could retrieved from these testing include: user

name password, bank account number, database super

admin login, ATM booth pin number, users address, phone

number and many other sensitive information. In this section

we analyze investigated web applications based on get and

post method.

A. Analysis of data-set vulnerable to get

based SQLi
340 web applications of the dataset are vulnerable to various

query splitting techniques of get based SQLi. Shown in

Figure 17, 65% of the websites are vulnerable to single

quote (’) splitting. And other 10% and 15% could be

exploited by double quote (”) and single quote single

bracket.

Figure 17. Websites vulnerable to Get based SQLi

B. Analysis of data-set vulnerable to post

based SQLi
In the data-set we have found 60 web applications

vulnerable to post based SQLi. Shown in Figure 19 in the

post based dataset the onlt splitting vulnerabilities found are

single quote and double quote

Figure 18. Websites vulnerable to Post based SQLi

One key reason for web application vulnerability is the

language and the platform of the development. In the post

based vulnerable dataset 49% of the vulnerable web

applications are developed using php version 5 or higher.

About 46% are build using php version 4.4.9. Less than 2%

are built with Joomla version 2.5 and 3% are built with

ASP.net version 4 or lower. This analysis results may differ

if the number of analyzed web application increases. In the

data-set of post based SQLi vulnerable web applications,

53.33% of the applications are build using php version 4.9

and less. The rest of 43.33% build using php version 5.

V. Conclusion
This paper presents analysis of SQLi vulnerabilities existent

in the web applications of .bd domain. Online web

applications are recently getting popular in Bangladesh. So

far no study has been done on the existing vulnerabilities

these web applications endure. This paper is the first attempt

towards analysis. For evaluation user input based SQLi

techniques has been used to check the vulnerabilities of 600

web applications of .bd domain. 400 SQLi vulnerable web

applications are found. Among them 340 web applications

are found vulnerable to get based SQLi and 60 exploitable

through post based SQLi. There is no overlap between these

two techniques. Most of these vulnerable web applications

are build using various older versions of php language. And

CMS. The results also suggest the web servers are not

properly maintained. These vulnerabilities could be

prevented by using proper user input authentication and

regular update. It is expected that the future developers

would follow the best practice guideline for web

applications before deployment.

References
[1] Halfond, W. G., Jeremy Viegas, and Alessandro Orso. "A

classification of SQL-injection attacks and countermeasures."
Proceedings of the IEEE International Symposium on Secure

Software Engineering. IEEE, 2006.

[2] Bertino, E.; Kamra, A.; Early, James P., "Profiling Database

Application to Detect SQL Injection Attacks," IEEE International

Performance, Computing, and Communications Conference, 2007.
IPCCC 2007., pp.449,458, April 2007

[3] Mittal, P.; Jena, S.K., "A fast and secure way to prevent SQL injection
attacks," IEEE Conference on Information & Communication

Technologies (ICT), 2013, pp.730,734, 11-12 April 2013

[4] Tajpour, A.; JorJor Zade Shooshtari, M., "Evaluation of SQL
Injection Detection and Prevention Techniques," Second International

Conference on Computational Intelligence, Communication Systems

and Networks (CICSyN), 2010 , pp.216,221, 28-30 July 2010

[5] Johari, R.; Sharma, P., "A Survey on Web Application Vulnerabilities

(SQLIA, XSS) Exploitation and Security Engine for SQL Injection,"
International Conference on Communication Systems and Network

Technologies (CSNT), 2012 , pp.453,458, 11-13 May 2012

[6] Sunkari, V.; Guru Rao, C.V., "Preventing input type validation
vulnerabilities using network based intrusion detection systems,"

International Conference on Contemporary Computing and

Informatics (IC3I), 2014 , pp.702,706, 27-29 Nov. 2014

[7] Munadi, R.; Surya Fajri, T.; Meutia, E.D.; Mustafa, E., "Analysis of

SQL injection attack in web service (a case study of website in Aceh
province)," 3rd International Conference on Instrumentation,

Communications, Information Technology, and Biomedical

Engineering (ICICI-BME), 2013, pp.431,435, 7-8 Nov. 2013

[8] Kumar, P.; Pateriya, R.K., "A survey on SQL injection attacks,

detection and prevention techniques," Third International Conference

on Computing Communication & Networking Technologies
(ICCCNT), 2012, pp.1,5, 26-28 July 2012

[9] inz n, . e az, .F. ajo, J.; Herrero, A.; Corchado, E., "AIIDA-
SQL: An Adaptive Intelligent Intrusion Detector Agent for detecting

SQL Injection attacks," 10th International Conference on Hybrid

Intelligent Systems (HIS), 2010, pp.73,78, 23-25 Aug. 2010

[10] Sharma, C.; Jain, S.C., "Analysis and classification of SQL injection

vulnerabilities and attacks on web applications," International
Conference on Advances in Engineering and Technology Research

(ICAETR), 2014 , pp.1,6, 1-2 Aug. 2014.

