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Abstract—This paper proposes an entropy-based best tree 

decomposition and reconstruction method for signals on 

graphs. A recently popular method for graph signal 

decomposition is to down-sample and filter a graph signal by 

low-pass and high-pass filters, then iterate decomposition on 

every low-pass component. This method is not well-suited for 

graph signals with significant high frequency components.  We 

propose a new method to decompose a graph signal according 

to an entropy based best tree decomposition scheme. This 

method is adaptive for graph signal decomposition, and it gives 

more accurate and robust representations for graph signals. 

The proposed decomposition method is shown to provide an 

efficient representation well-suited for graph signal 

compression, or graph-based image compression.  The 

performance of the proposed method is validated by real-world 

graph signal recovery problems. The new method also achieves 

better performance than the existing wavelet-like 

decomposition in graph-based image decomposition and 

reconstruction.  

Keywords— Graph Fourier transform,  graph signal filter, 

entropy, graph signal compression.  

I.  Introduction  
Many type of modern real-world data, for example from 

social or transportation network,  are naturally reside on 
complex domains, e.g. graphs or networks.  The complex 
underlying structures of these kinds of data disabled the 
application of the classical signal processing methods. New 
representation and analysis techniques are required for 
processing of signals on graphs, which lead to a new 
research field called signal processing on graphs. The core 
problem in signal processing on graphs is to develop signal 
processing theory similar to the classical signal processing. 

 Time-frequency analysis is a very important component 
in classical signal processing [1]. Analogously, developing 
vertex-frequency analysis theory on graphs  is  one of the 
main topics in graph signal processing theory. Recently, 
spectral graph theory play a key role in developing a   
frequency   analysis   theory   on   graph   signals. The 
foundation of the theory is to apply graph Laplacian matrix 
and its eigenvectors to establish the so called graph Fourier 
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transform, which captures the spectral property of the given 
datasets [2].   

In classical signal processing, wavelet transform is 
ubiquitous in time-frequency signal and image analysis. The 
significant advantage of the wavelet transform is that it 
gives time-frequency representations, and present local 
characteristics of given signals. One of the main topics in 
graph signal processing is to develop wavelet transform or 
wavelet-like transform on graphs.  Since graphs are irregular 
domain, local transforms on graphs similar to wavelet 
transform can be defined in different ways, to name a few, 
spectral wavelets [3], CKWT [4], Haar-like wavelets [5], 
diffusion wavelet [6], and separable filterbank wavelets [7]. 

Classical wavelet transform proceeds filtering and 
downsampling on each scale or resolution level to establish 
a multiscale analysis. To establish a wavelet-like transform 
on graphs, one has to find proper techniques for filtering, 
downsampling, and multiscale analysis on graphs.  Graph 
filtering can be defined by using graph Fourier transform, 
similar to classical frequency filtering. Design of 
downsampling operation on graphs requires more complex 
techniques. 

In [8], Narang and Ortega proposed a downsampling 
then upsampling method on bipartite graph signals, and then 
extend it to general graphs by using Harary's algorithm and 
graph coloring.  The corresponding two channel filter banks 
designed in [8], which are called graph quadrature mirror 
filterbanks (graph-QMFs), are critically sampled, perfect 
reconstruction and nearly orthogonal.  But the graph-QMFs 
is in general not compact supported,  compact supported 
filterbanks can directly control  the trade-off between 
localization in the vertex domain and the spectral domain. In 
[9], graph-QMFs are relaxed  by giving up the condition of 
orthogonality to  design a biorthogonal pair of compact 
supported graph filter banks.   Tanaka and Sakiyama 
extended biorthogonal graph filter banks to the case of M-
channel oversampled graph filter banks in  [10, 11]. The 
filter bank design mentioned above lead to a graph 
decomposition similar to one level classical wavelet 
transform, but the downsampled graph signal do not 
inherent any graph structure from the original graph. In [12], 
Do and Nguyen designed a downsampling method for graph 
signal by using maximum spanning trees (MST). A graph 
multiresolution is naturally generated by filtering and 
downsampling on the maximum spanning tree of a given 
graph signal.  

However, both the graph coloring based and MST-based 
methods iterating on down-sampling and filtering on the 
lower-pass components, and such a scheme is not adaptive 
to different types of graphs signals, especially for signals 
with significant high frequency components. Then iterating 
decomposition on the high-frequency components are 
required for some applications. We first develop a full 
subband decomposition, i.e., decompose both the high-pass 
and low-pass components, for image decomposition, but it 
performs poorer when more decomposition level is 
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implemented. In order to develop an adaptive downsampling 
method on graph signals or graph based image processing, 
we propose an entropy based best tree decomposition 
scheme in this paper.  We will propose two types of entropy 
based best tree decomposition scheme, i.e., time-varying 
signal entropy best tree and graph signal entropy best tree 
decomposition. For graph based image processing, an image 
is considered as a graph signal on an 8-nearest neighbor 
connected and 4-colored graph, then we use the bipartite 
graph downsampling and filtering to decompose an image, 
and since images are time-varying signals, we will use a 
time entropy best tree to find the adaptive decomposition for 
an image. Then for graph signals, in order to generate a 
multi-scale analysis, we apply the MST based 
downsampling. We will also introduce the definitions of 
graph entropies for searching of the best tree decomposition.  

II. Graph Fourier transform 
In this section, we review the definition of graph Fourier 

transform. Consider a weighted graph  ,  ,  G V E W , 

where V  denotes the set of vertices, E  denotes the set of 

edges, of the graph, respectively.  W  is the weighted 

adjacency matrix. If there is an edge  ,e i j  connecting 

nodes i and j , 
,i jW  represents the weight assign to the edge  

 ,e i j , otherwise, , 0i jW  . Define the degree matrix D  

associated to the graph G  as a diagonal matrix whose i -th 

diagonal element 
id  is equal to the sum of the weights of all 

the edges incident to vertex i , i.e. ii ij

j

D W . Then the 

graph Laplacian, also called the combinatorial graph 
Laplacian of G  is defined as L D W  . Obviously, L  is a 

real symmetric matrix, and therefore has a complete set of 

orthonormal basis. Denote these eigenvectors by 
lu  for 

0,1, , 1l N  , with associated eigenvalues 
l , i.e. 

l l lLu u . A normalized Laplacian is defined 

as
1 1

2 2I D WD
 

 L . For a connected graph, the spectrum 

of L , ( ) [0,2]. L In particular, max( ( )) 2 L  if the 

graph is a bipartite graph. In this paper, we will apply the 
normalized Laplacian, for the applying the structure of the 
spectrum. The eigenvalue and eigenvectors are denoted by 
the same notations as mentioned above, and we denote the 

eigenvector matrix by 
0 1 1( , , , ).NU u u u   The subspaces 

spanned by eigenvectors correspond to the same eigenvalue 

 is denoted by V , then the corresponding eigenspace 

projection matrix on V  is defined as : ,
l

T

l lP u u
 

   where 

T

lu  is the transpose of lu . Then for any vector    

defined on the vertices of G , its graph Fourier transform f̂  

is defined by 
*

1

ˆ ( ) , ( ) ( ).
N

l l l

n

f f u u n f n


     The inverse 

transform can be derived by:
1

0

ˆ( ) ( ) ( ).
N

l l

l

f n f u n




  The 

Parseval equation holds for the graph Fourier transform, that 

is, for any , ˆ ˆ, , .f g f g      

Note that graph Fourier transform is consistent with the 
traditional Fourier transform if a finite discrete periodic 
signal is defined on a circle graph, since the eigenvector 
matrix of its Laplacian is the discrete Fourier transform 
matrix. 

III. Graph signal filtering 
In classical signal processing, filtering operation on a 

signal f   is defined by computing convolution of f  with a 

filter kernel h , and the output signal  where * 

is the convolution operator. Taking Fourier transform on 

both side, we have . Then similarly, graph 
filtering is also defined via graph Fourier transform, but only 
on the spectrum domain, that is, . 
Then taking inverse graph Fourier transform on both sides, 
we have . In a matrix 

form, the last equation can be written as  , 
where  

0

*1

1

ˆ( )

ˆ( )ˆ( ) .

ˆ( )N

h

h
h U U

h





 

 
 
 

  
 
 
 

0

0

L  

The critically sampled two-channel filter banks on 
graphs consist of 4 filter banks: the low-pass and high pass 

analysis filters 
0 1,H H  and the low-pass and high-pass 

synthesis filters 
0 1,G G  [9].  

In matrix form, the corresponding transform matrices 
can be written as, for 0,1i  : 

 

 

In order to achieve a critically sampling, that is, the 
number of analysis filters is equal to the downsampling 
factor, a downsampling operator on graphs of factor 2 is 
defined in [8].  Downsampling on graphs is proceeded by 
choosing signal samples on a subset of nodes H V and 

discarding the samples on the other nodes .cH Then an 

upsampling operator is defined by inserting zeros into the 
downsampled component on the discarded nodes 

.cH V This downsampling then upsampling process can 

be expressed in the following relation: 

1
(1 ( )) ( ),

2

H

du Hf n f n   where ( ) 1H n   if  n H ,  and 

( ) 1H n    if  n H .  Denote : ( ( ))H HJ diag n .  Then in 

matrix form, we have
1

( )
2

H

du Hf I J f  .  Downsampling on 

graphs requires to separate the node set V  into two subsets, 

for general graphs, this leads to a technique design of 
separation.  For bipartite graphs, the structure of the graph 
naturally gives a separation, since by its definition, a 
bipartite graph is a graph whose nodes can be partition into 
two disjoint subsets L  and H , such that each edge of G  

connects one node from L  to one node from H . The 
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spectrum of a bipartite graph has the following properties 
[8]: 

a) Given a bipartite graph ( , , )L H EB  with the Laplacian 

matrix L and with the partition function   defined as 

above on L  or H , then if    is a eigenvalue of L  with 

eigenvector  ,u then 2   is also an eigenvalue of L with 

eigenvector 
2 .Hu J u    

and the perfect reconstruction condition: 

b) Given a bipartite graph  , , ,G L H E and the filter 

kernels as defined as above. For any [0,2],  the perfect 

reconstruction is equivalent to 

 

 

 

IV. Graph entropy  
Similar to classical wavelet transform, the wavelet-like 

decomposition for graph signals decompose a graph signal 
into low-frequency and high-frequency components and 
then iteratively decompose the low-frequency components, 
i.e., the approximated parts, see Figure 1 for a two-level 
decomposition of a graph signal and its reconstruction in the 
setting of two channel graph filter banks. 

 

Figure 1: Two channel two level graph filter bank. 

However, for graph signals with significant high-
frequency components, decomposition on the low-frequency 
components is not effective for extracting local 
characteristics in the high-frequency components. We 
propose an adaptive decomposition for graph signals in this 
section by using a graph entropy measurement. For that, we 
will have to introduce a definition of graph entropy.  Then 
using the entropy measurements to establish a best tree 
decomposition of a given signal. The Shannon entropy of 
coefficients of a time-varying signal x  is defined 

as
2 2( ) ( ),i i

i

H x x log x  where ( )log  is the natural 

logarithm. A log-energy entropy of signal x  is defined as: 
2( ) ( ).i

i

E x log x   Now we define the entropy for a graph 

signal f  on graph  ,  ,  . G V E W  A graph signal entropy 

should captures the characteristics of both the signal and the 

graph it resided. For that, we define , ,

,

/i i j i j

j i j

q w w  , 

which denotes the share of the edge weights related to node 
i  in all the edge weights. Then we define the shannon type 

graph signal entropy as follows: 

( , ) ( ) ( ( )) ( ),S i i j j

i V j V

H f G p f log p f q log q
 

   

where    ,i ip f p f f  the probability of .if f  Then 

we have,         , ,SH f G E log p f E log q where 

( )E  is the expectation function.  

We can also define a log-energy graph signal entropy: 

( , ) ( ( )) ( ).log i j

i V j V

H f G log p f log q
 

   

Note that we substitute the terms 2

if  by 2( ) ,ip f and 

since   0,ip f  we skip the power of 2 in the definition. 

Other graph signal entropies and their detailed properties 
will be discussed in an extended version of this paper. 

In the following, we present the algorithm for graph entropy 
based best tree decomposition for graph signals via MST-
based decomposition, see Algorithm 1. 

 

Note that, Algorithm 1 can only be applied to MST based 
decomposition. For graph based image decomposition, sub-
images are assigned 8-connected graphs, and the 
decomposition can be implemented iteratively. 

V. Application on image 
decomposition 

In the case of image processing, since images are time-
varying signals on regular grids, we will use the classical 
entropy to find the best tree image decomposition.  The 
entropy we use in this paper is the log-energy entropy, 

which is defined as
2( ) ( )i

i

E x log x .  In our matlab 

experiments, we use a variation of log-

energy, ( ) ( )i

i

E x log p , where ( )i ip p x x  . When 

using the log-energy entropy, we applied a quantization on 

the signals, that is, 1( | )i i ip p x b x b    , with 

 0   b min x ,    Nb max x , 
1 0

1
( )i i Nb b b b

N
    . 
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The best tree decomposition and the pseudo code of the 
Graph based image best tree decomposition algorithm is 
shown in Algorithm 2. 

 

A best tree decomposition by using the graph 
biorthogonal filter banks graphBior(5,5) from [9] on 
Lichtenstein image is shown in Figure 2. 

 

Figure 2.  3 level best tree graph filter bank 
decomposition for Lichtenstein image. 

For comparison, we also present the results of full 
subband decomposition (i.e., decomposing both high-pass 
and low-pass components) and wavelet-like decomposition. 

Our proposed best tree decomposition performs 
adaptively in decomposition, and keeps a balance between 
the full subband decomposition and wavelet-like 
decomposition, all the experiments used the same filter 
banks graphBior(5,5). For piecewise smooth images, 
wavelet-like decomposition gives better result, and the 
superiority (compare to full subband and best tree 
decomposition) increases with the decomposition level, see 
Table I.  

TABLE I.  RECONSTRUCTION OF IMAGES USING 3% HIGH-PASS 

COEFFICIENTS FOR BALLET IMAGE: SNR (DB) 

level Full subband Best tree Wavelet-like 

2 45.09 46.66 46.66 

3 39.37 41.38 41.38 

4 35.60 39.08 39.08 

5 33.13 38.14 38.14 

 

But for images with significant textures, such as Barbara 
image, a full subband decomposition outperforms the 
wavelet-like decomposition, see Table II.  

TABLE II.  RECONSTRUCTION OF IMAGES USING 3% HIGH-PASS 

COEFFICIENTS FOR BARBARA IMAGE: SNR (DB) 

level Full subband Best tree Wavelet-like 

2 20.76 20.76 19.26 

3 20.17 20.01 17.53 

4 19.11 18.93 17.04 

5 18.06 18.20 16.91 

 

We apply our best tree on the following 6 test images, 
i.e. Coins, Lena, Ballet, Barbara, Baboon, and Lichtenstein. 

 

Figure 3. Test images. 

 In the reconstruction, all the low-pass coefficients and 
3% of the largest magnitude high-pass are retained. Table III 
shows the SNR quality measures versus the decomposition 
levels, for full subband decomposition, best tree 
decomposition and wavelet-like decomposition.  The three 
schemes are equivalent for 1 level decomposition, for 2-4 
level decomposition, the best tree decomposition gives best 
performances in SNR, while wavelet-like decomposition 
gives best performance in 5 level decomposition.  
Decomposing images into low-pass and high-pass 
components leads to smaller and smaller coefficients as the 
level increases, and leading to a poorer performance of the 
full-subband and best tree decomposition. 

TABLE III.  RECONSTRUCTION OF IMAGES USING 3% HIGH-PASS 

COEFFICIENTS FOR 6 TEST  IMAGE: SNR (DB) (AVERAGE) 

level Full subband Best tree Wavelet-like 
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level Full subband Best tree Wavelet-like 

2 27.53 27.62 27.26 

3 25.20 25.24 24.83 

4 23.57 23.85 23.78 

5 22.33 22.99 23.34 

 

In Table III, we can see that the best tree decomposition 
does not perform better than wavelet-like decomposition in 
level 5, simply because the decay of decomposition 
coefficients. 

VI. Conclusion 
In this paper, an entropy best tree decomposition  for 

graph signal is proposed. This method is an improvement of 
the recent developed wavelet-like graph signal 
decomposition. Wavelet-like graph signal decomposition are 
not effective for signals with significant high-frequency 
components. We modified the wavelet-like graph 
decomposition to a wavelet-packet-like decomposition, 
which is adaptive to any given graph signals. To achieve 
that, we define a graph signal entropy, and using it to find a 
best tree decomposition of a given signal. We applied the 
algorithm to graph-base image decomposition,  our proposed 
method outperforms the wavelet-like decomposition. 
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