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Abstract—An online 2-D changepoint detection algorithm 

for sensor-based fault detection, is proposed. The algorithm 

consists of a differential detector and a standard detector and 

can detect anomalies and meaningful changepoints while 

maintaining a low false-alarm rate. The efficiency of the 

algorithm is validated by two industrial examples. It is thereby 

shown that the proposed algorithm can be used as an early 

warning indicator and prevent impending unit failures. 
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I.  Introduction 
Detecting novelties in the temporal evolution of a system 

(physical, mechanical, financial, etc.) has received great 

attention over recent times (see for example [2], [3]). When 

dealing with complex systems, it is often the case that only a 

limited understanding of the underlying relationships 

between various system components can be obtained. 

Therefore, it immediately follows that a large number of 

“abnormal modes”, some of which may not be known a-

priori, exist. One approach to address this issue is by using 

novelty detection schemes (see [1] for a comprehensive 

survey) where a description of normality is learned by 

constructing a model with a number of previously seen 

examples of the normal system behaviour. Previously 

unseen data is then compared with the derived model, often 

generating a novelty score. This score is compared against a 

decision threshold, and the data is then considered to be 

“abnormal” if the threshold is exceeded.  

Changepoint detection [4], [5] is a well-established class of 

novelty detection schemes where the aim is to detect 

whether the general distribution of a sequence of 

observations has remained steady or has undergone some 

abrupt change. The typical approach to this problem is to 

find a statistic appropriate for testing the hypothesis that a 

change has occurred with respect to the hypothesis that no 

change has occurred.  

Given a data sequence that includes abrupt changes, a 

desirable changepoint detection algorithm must be able to 

distinguish between “important” and “unimportant” 

changes. Clearly, what is interpreted as “important” depends 

on the application and varies by context.  

The problem of fault detection and isolation has been 

studied extensively (see e.g. [20]). In this paper, an online 2-

D changepoint detection algorithm for highly correlated data 

is developed to address the fault detection problem in the 

relevant fields such as sensor networks.  

This paper is organised as follows. A brief overview of 

change- points and changepoint detection is given in Section 

II and the choice of online/offline detection is discussed. 

Welford’s method that is used to compute the “online” 

standard deviation is described in Section II-A. An online 2-

D changepoint detection algorithm is proposed in Section II-

B and its efficiency is tested with two industrial examples in 

Section III.  

II. Changepoint Detection 
From a statistical perspective, abrupt variations that change 

the probability distribution of a stochastic process or time 

series are referred to as changepoints. Often, these variations 

can be important, indicating an interesting event (e.g., a 

failure), or unimportant, indicating an expected change. 

Changepoint detection concerns identifying the times when 

these important variations occur.  

The problem of change-point detection has been actively 

studied over the last several decades. A typical statistical 

formulation of change-point detection is to consider 

probability distributions from which data in the past and 

present intervals are generated, and regard the target time 

point as a change- point if two distributions are significantly 

different. Various approaches to change-point detection 

have been investigated within this statistical framework, 

including the CUSUM (cumulative sum) [5] and GLR 

(generalized likelihood ratio) [6], [7] approaches.  

Changepoint detection algorithms are generally classified as 

“online” and “offline” based on their deployment method. In 

an online algorithm, a streaming signal is given without any 

information regarding its future behaviour. The algorithm 

then aims to detect a changepoint as it occurs while keeping 

the rate of false alarms to a minimum. Conversely, when 

using an offline algorithm, the whole signal is given and the 

goal usually is set to detect all the changepoints in a 

sequence with an estimation of their occurrence. It should be 

noted that choice of offline or online depends heavily on the 

application. However, when dealing with fault detection it is 

desired to detect a failure as soon as it occurs. Therefore, an 

online algorithm is presented.  

As an online and offline signal processing tool, changepoint 

detection has been demonstrated to be effective in 

application areas such as process control [8], EEG analysis 

[9], [10], [11], DNA segmentation [12], econometrics [13], 

[15], and disease demographics [14].  

In what follows, an efficient and reliable method for 

computation of the statistics for online changepoint 

detection is discussed with a focus on fault detection in 

industrial systems.  

A. Welford’s Method 
The problem of calculating the variance of n data points {x

i
} 
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can be difficult, particularly when the number of data points 

is large and the variance is small. Consider the sequence X = 

{x
1 

,... , xn}, an unbiased estimate of the sample variance σ
2
 

can be straightforwardly calculated from: 

s 2 =
1

n(n-1)
(n xi

2 - ( xi )
2 )

i=1

n

å
i=1

n

å .     (1) 

From (1), it is readily seen that the computation of variance 

is carried out in two phases: Firstly to compute the mean 

over the data and then to calculate sum of the squares of the 

x
i
’s. Variance calculation algorithms play an important role 

in computational statistics. It is often useful to be able to 

compute a running variance (i.e., in one pass) for a stream of 

values, e.g., when costs of memory access dominate those of 

computation.  

Moreover, although (1) appears applicable in simple cases, 

in scenarios where the standard deviation is relatively small 

compared to the mean, using (1) can lead to catastrophic 

cancellation [16], [17]. That is, n x2

i

i=1

n

å and ( xi
i=1

n

å )2
may 

be considerably large in practice and calculated with 

significant rounding error. Therefore, if the variance is 

small, these numbers cancel out almost completely once 

subtracted (or even resulting in a negative σ
2 

in some cases).  

To avoid such issues, a number of alternative algorithms 

have been proposed (see e.g., [16], [18], [19]) one of which 

is the iterative algorithm proposed by Welford [16]. This 

method is based on an iterative formulation:  
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with M11 = x1 and S1,1 = 0. Tij and Mij are used to denote the 

sum and the mean of the data points from xi to xj 

respectively.  

In this method, each iteration consists of updating Mij by the 

addition of a single data point and the algorithm requires 

only one pass of the data. The desired value of S is 

ultimately obtained as S
1,n 

and therefore, the sample variance 

is calculated as S/(n − 1).  

B. Welford’s Method 
Consider that N≥ 2 sequences of highly correlated streaming 

data are given. In this section, a 2-D changepoint detection 

algorithm is introduced that detects possible changepoints 

online, while maintaining a low false-alarm rate. For this  

purpose, two detectors are developed; the differential 

detector that considers changes among the streams, and the 

standard detector which looks for possible changepoints 

within the streams individually. The detectors are executed 

concurrently as the data is streamed and return a flag once a 

pre-defined threshold is exceeded. If either detector returns a 

flag, this is recognised as an early warning of a possible 

development of a changepoint. However, if both detectors 

return a flag, it is concluded that a changepoint has occurred.  

Consider the sequence of received signals x = x[1], x[2], ..., 

x[N] at time t. The differential detector computes the 

standard deviation of the i-th signal from the mean of x − 

{x[i]}, i ∈ {1, 2, ..., N} and compares it against a threshold 

(see Algorithm 1). Since the data is highly correlated, if x[i] 

differs significantly enough to pass the threshold 

(Threshold
1
), from the rest of the sequence, it triggers the 

flag.  

 

Algorithm 1: Differential detector algorithm 

For construction of the standard detector, a sequence of 

sliding windows are used that hold the L recent points, 

considered here as the sample. Lengths of the windows are 

fixed so when the new signal sequence arrives, the data 

points at the end of the windows are dropped to maintain the 

length. Moreover, the whole observed signal received up to 

the current time step is referred to as the population (see 

Figure 1).  

 
Fig 1. Standard and differential detectors processing N 

streams of data. 

The standard detector is constructed by calculating the 

distance from the sample mean (M) to the population mean 

(μ) in units of standard error:  

This is commonly referred to as the standard score, hence 

the name of the detector.  
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Welford’s method, described in II-A, is used to calculate the 

standard score. The score is used to determine the difference 

between the incoming data stored in the windows and the 

data previously observed. If this difference exceeds a certain 

threshold (Threshold
2
), a flag is raised. A detailed 

description of this method is given in Algorithm 2. 

 

Algorithm 2: Standard detector algorithm 

 

Notation Definition 

N number of data lines 

x new data sequence with size n 

S variable for the Welford’s method 

  sequence of N windows 

L size of the window 

mean win mean of the window 

mean global mean of the whole signal received so far 

mean old last computed mean of the whole signal received so far 

mean new new mean of the whole signal received so far 

signal size size of the data received so far 

std global standard deviation of the whole signal received so far 

std score 
Number of standard deviations an observation is above or 

under the mean 

SE Standard error of the whole signal received so far 
 

TABLE I. NOTATIONS 
 

The whole process of the proposed changepoint detection 

can be seen in the flowchart depicted in Figure 2.  

 

Fig 2. Changepoint detection flowchart  

 

III. Experimental Case Study 
Using the algorithm developed in Section II-B, in this 

section the problem of fault detection in industrial gas 

turbine burners is investigated. The gas turbines of interest 

here normally have 6 burners that are placed in an annular 

displacement, as seen in Figure 3.  

 

Fig 3. Annular array of burners in the combustion system  

 

Considering the close proximity of the burners, it is 

expected that the designated sensors roughly read a similar 

temperature, which results in a highly correlated data set. It 

is important to note that this data can contain abrupt changes 

not because of failures, but due to other conditions like 

noise, changes of load and shutdowns, which are considered 

“normal”.  

In this setting, it is crucial to determine whether an observed 

changepoint is an indication of an actual failure or other 

possible factors to keep the false-alarm rate to minimum.  
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A. Malfunction of One of The Burners 
The first scenario is a malfunction on the 6th burner that 

starts to develop on day 15 of the observation (see Figure 4). 

As can be seen, after the 15th day, the measurement from 

Sensor 6 deviates from its previous trend and drops 

significantly until it reaches a steady state a few days after, 

while the remaining sensors read the expected temperature. 

It is worth noting that from the beginning of the observation, 

Sensor 6 is reading a slightly higher temperature when 

compared to the others. Moreover, Sensor 4 is reading a 

lower temperature for the early periods of the observation 

until it converges with the rest approximately on day 8. 

Although these abnormalities do not indicate a malfunction, 

it is important that they receive further attention in case they 

develop into a failure in the future. Thus, it is desired that a 

flag be raised when the detector receives the corresponding 

data sequences. 

Fig 4. Burner temperatures for 28 days of observation. 

Sensor 6 indicates a malfunction on day 15. 

As can be seen from the results of the proposed changepoint 

detection algorithm in Figure 5, the anomalies are detected 

and flagged by the differential detector. The algorithm 

continues to receive the incoming sequences until both 

detectors highlight a change on the 15th day. Notably, in this 

instance, the engine was kept running when this malfunction 

occurred which could have caused additional ongoing 

damage.  

 

Fig 5. Times when the abnormalities and the 

changepoint in the data are flagged by either detector. 

 

Calculated deviations and the standard score are plotted in 

Figures 6 and 7 respectively. From Figure 6, it is readily 

seen that from the start, sensors 4 and 6 follow a different 

trend compared to the others. Therefore, the differential 

detector raises a flag to inform about this abnormality. It is 

also interesting to note from Figure 7 that one can easily 

check that the computed standard scores for Sensor 6 

deviates from the rest of the sensors almost a week prior to 

the malfunction.  

 

Fig 6. Directional graph of the deviation score computed for 

each sensor. 
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Fig 7. Graph of the standard score computed for each sensor. 

B. No Failure on The Burners 
In this case, burner temperatures are observed for 1 week. 

Although no failure occurs, the data contains interesting 

abnormalities that might be perceived as failures when using 

alternative algorithms (see Figure 8).  

Specifically, on day 2, all temperatures drop abruptly. 

Although the standard detector captures this sudden change, 

the differential detector ignores it since all sensors are 

affected. Thus an alarm is not raised for this incident and the 

engine can continue to operate. However, it is essential that 

its performance be monitored carefully since a number of 

flags are raised.  

 

Fig 8. Burner temperatures for 7 days of observation. 

Moreover, on the 4th observation day, while the temperature 

on all sensors marginally drop, Sensor 6 reads a higher 

temperature for around 2 days and returns to its normal trend 

on day 6. Similar to the 2nd day incident, no alarm is raised 

here since the standard detector’s threshold is not exceeded.  

Figure 9 shows the times when the abnormalities in the data 

are flagged by either of the detectors.  

 

Fig 9. Times when the abnormalities in the data are flagged 

by either detectors. 

Calculated deviations and standard scores are plotted in 

Figures 10 and 11 respectively. It can be verified from 

Figure 10 that Sensor 6, shows a different performance 

compared to the others although the abrupt change of day 2 

incurs behaviour similar to the other sensors.  

 

Fig 10. Directional graph of the deviation score computed 

for each sensor. 
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From Figure 11 it can be observed that although the 

calculated standard score for Sensor 6 is higher than the 

other sensors on day 2, when the differential detector has 

raised a flag, an alarm is not triggered since the threshold is 

not exceeded.  

 

Fig 11. Graph of the standard score computed for each 

sensor. 

In this example, it was seen that although abrupt changes 

and abnormalities were presented in the temperature 

measurements, the algorithm correctly did not trigger an 

alarm.  

IV. Conclusion 
In this paper, an online 2-D changepoint detection algorithm 

that detects chanegpoints in a sequence of correlated 

streaming data was developed. The detection algorithm uses 

two detectors namely, the differential detector and the 

standard detector that look for changepoints among and 

within the data sequence respectively. The significance of 

the proposed algorithm is that it reliably detects all of the 

anomalies that are present in the data and intelligently raises 

an alarm when an anomaly is deemed to be evidence of an 

impending failure. 
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