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Abstract — For signal processing in sensor networks there 

is an on-going challenge for filling missing information when it 

is either incomplete, uncertain or biased, in ways that are both 

efficient and with confidence. This paper reviews three 

established and additional newly developed techniques 

addressing the problem. Considering sensor signals that are 

highly correlated in a sensor network, one sensor measurement 

can be reconstructed based on measurements from other 

sensors. In such cases, three signal reconstruction methods are 

considered: 1) principal component analysis (PCA) based 

missing value approach; 2) self-organizing map neural network 

(SOMNN) based algorithm; and 3) an analytical optimization 

(AO) technique. To demonstrate the efficacy of the methods, 

temperature data are studied on an industrial gas turbine 

system, where, especially, a faulty sensor signal is utilized to be 

reconstructed from the other sensor measurements.  

Keywords — signal reconstruction, principal component 

analysis, self-organizing neural network, analytical 

optimization. 

I.  Introduction  
Electronic equipment now supports almost every 

technical device and appliance to help a user or operator, 
with sensors taking the role of localised „eyes and ears‟. To 
retrieve reliable and accurate information from sensor 
networks is of special importance in complex systems due to 
the benefits of reducing down-time and loss of productivity, 
and increasing the assurance of safety, quality and reliability 
of systems [1]. 

Following identification of a faulted sensor, a decision 
needs to be made as to whether operation of the unit can 
continue, possibly at reduced capacity or lower 
performance, or whether the unit should be shut-down for 
immediate maintenance.  The latter option is often 
considered a significant disturbance with enforced down-
time leading to lost productivity. An alternative, therefore, is 
to try and reconstruct a „best estimate‟ of the measurements 
expected from the faulted sensor with a view to facilitate 
improved unit availability [2].  

Principal component analysis (PCA) is extensively 
applied for data analysis purposes to reduce a large dataset 
whilst still preserving „sufficient‟ information contained in 
the original data. The PCA-based missing value approach is 
used to reconstruct the faulted signal by using measurements 
from non-faulted sensors and the correlations established 
from training data. [3] 
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Artificial neural networks (ANNs) have been applied 
extensively for system identification based on black-box 
modeling through analytical means, especially successfully 
for highly nonlinear complex dynamical systems. Based on 
self-organizing map neural network (SOMNN) algorithm, 
for a 2-dimensional output space, the faulted signal can be 
reconstructed by adjusting the weight vector using a 
combination of its k-nearest nodes. [4] 

An analytical optimization (AO) technique has been 
presented in [5] to use a generalized multi-dimensional 
linear regression technique to provide a general optimal 
affine linear transform to facilitate signal reconstruction in 

the event of sensor failure by solving a 2l -norm 

minimization problem, for sensor fault detection and sensor 
measurement reconstruction, and a minimal sensor set can 
be selected based on redundant information. 

In this paper, the three approaches are applied for sensor 
measurement reconstruction in an industrial gas turbine 
system. The relative merits of each method is discussed 
through use of experimental trials. 

II. Methodology  
Here, the treatment is restricted to a brief overview to 

introduce terminology and definitions that are subsequently 
used for the three signal reconstruction approaches. 

A. PCA 
Let X be the original data matrix, with I rows indicating 

the sensor samples and J columns of time steps. The 
covariance matrix C is then defined by 

 T

J
XXC

1
.                                (1) 

The eigenvectors and eigenvalues of the covariance matrix 
are found from  

ΛCVV 1 ,                                    (2) 

The eigenvectors and eigenvalues are rearranged in order of 
decreasing eigenvalues. The first P columns of V are then 

retained as the basis matrix V , where IP 1 . 

To describe the original data in principal component 
space, the following relation is used: 

XVY
T
 ,                                      (3) 

where Y is the principal component matrix, which is a 
representation of X after PCA, with the ith row representing 
the ith principal component [6]. 
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The PCA based missing value approach is used to 
reconstruct the signal by using the measurements from the 
other sensors and the correlations of the sensors from the 
training data. Assume the ith sensor is faulty, and the input 
signal is the original signal without the ith term 

 TT
i

T
ii  xxx .                                (4) 

The eigenvector matrix V  is modified by eliminating the 

ith row which the ith sensor contributed to: 
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Defining  Ti 0...0 1 0...0 0ε , with the ith component as 1, 

and other components as 0s. The estimate of the 
reconstructed signal is calculated from 
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 .                           (6) 

B. SOMNN 
A SOMNN is a competitive learning network [7]. An 

input data vector,   1
21 ,...,,  I

Ixxxx , with I variables 

(sensors), is associated with a reference vector, 1 I
ir , 

which is often randomly initiated to give each neuron a 
displacement vector in the input space. For each sample of 

)(tx , )(twr  constitutes „the winner‟, by seeking the 

minimum distance between the input vector and the 
reference vector, and is calculated from: 

)()()()( tttt iw rxrx   for  i .             (7) 

After obtaining a „winner‟, the reference vectors are updated 
using: 

 )()()()()1( , tttntt iiwii rxrr  ,            (8) 

where )(, tn iw  is a neighbourhood function, which is 

normally chosen as Gaussian. The reference vectors are 
adjusted to match the training signals, in a regression 
process over a finite number of steps, in order to achieve the 
final „self-organizing maps‟.  

Based on SOMNN algorithm, for a 2-dimensional output 
space, the faulted signal can be reconstructed by adjusting 
the weight vector using a combination of its k nearest nodes. 
Firstly, an activation function is defined to measure the 
activation of output neuron n for an input vector x by using a 
Gaussian kernel: 



















2

22

1
exp)( n

n

nT rx


 ,                  (9)                                                                     

where 2
n  is a parameter representing the influence region 

of neuron n. When the current sample of the sensor is 
detected as being faulty, the winning neuron for this 
measurement is no longer valid, and the weighting vector is 
estimated by considering the k-nearest neighbouring neurons 
of the corresponding winning neuron in the output space: 

  
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
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immi TT
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rz ,                     (10) 

where iz  is the estimation of the measurement, i is sensor 

index and m is the neuron index. 

C. AO 
To formulate the problem, assume that there are a total 

of J time samples from a system that comprises I sensors—
where M  of the sensors are considered to be functioning 

normally and the remaining )( MI   sensors have been 

identified to be at fault. To reconstruct an estimate of the 
measurements from the faulted sensors, it is necessary to 
determine a statistical relationship amongst all the sensors 
during normal operation.  

To investigate a suitable relationship, firstly, let 
1ˆ  M

ix  denote a measurement set from M  non-faulted 

sensors and 1)(ˆ  MI
iz  be a data set from )( MI   

faulted sensors: note that the measurements are taken when 
all the sensors are considered to be operating normally. For 
simplicity, it is assumed that the sensor measurements 

possess a linear correlation, hence, CxBz  jj
ˆˆ , for 
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To „optimally‟ reconstruct the data, the following 2l -norm 

error is proposed to be minimized:  
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This problem can be simplified by letting ][ CBA   and 
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x , then the equivalent solution is 

obtained from the following minimization problem: 
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The solution is then simply 
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After calculating the optimal matrix *
A , the data of the 

remaining )( MI   sensors can be estimated from: 

ii xAz
* ,for 1,,1,0  Ii  .                 (14)                                                            

since an analytical formula for obtaining the „optimal 
matrix‟ in (13) is derived a-priori, no iterative numerical 
optimization procedure is required [5]. 

III. Case Study 
To provide an illustrative focus to the study, a group of 

six burner tip temperature sensors, which are used to 
monitor the combustion system on an industrial gas turbine 
system, is investigated, as illustrated in Fig. 1. 

 

To evaluate the reconstruction performance of (6), (10) 

and (14), the 2l -norm relative reconstruction error, E , is 

defined as follows,   
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In this case, normal operational measurements from the 
burner tip temperature sensors are as shown in Fig. 2. The 
first 300 minutes are used as training data, and signal for 
Sensor 6 from 301 to 1440 minutes is estimated.  

The original and estimated measurements are shown in 

Figs. 3(a), (b) and (c) for the three approaches. The  2l -

norm relative prediction errors are 0.13%, 0.19% and 0.12% 
respectively, for the PCA, SOMNN and AO based 
approaches, signifying that the reconstruction bears an exce 
llent correspondence with the real measurements. PCA and 
AO based approaches give very similar reconstruction 
results. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3.  Reconstructed signal based on (a) PCA; (b) SOMNN and (c) AO 

  

 

 
 

Figure 2.  Signal reconstruction testing example (S=Sensor) 

 
 

 
 

Figure 1.  Industrial gas turbine and its combustion system 
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SOMNN based approach is subject to a relatively poor 
performance—this is attributed to using a limited subset of 
training data, and could be enhanced by a longer prior 
training period.  

Since AO gives the best performance from the testing 
example, the same principle is applied to the experimental 
trial to detect a sensor failure, as shown in Fig. 4. The 
faulted signal is reconstructed based on the AO algorithm, as 
shown in Fig. 5. From the results it can be seen that from the 
onset of the „fault period‟, the reconstructed data follows the 
normal trend (given by the behaviour of the other sensors) 
very reliably, and could therefore be used in place of the 
erroneous measurements in the short term. 

 

 

It should be noted that these techniques can also be 
readily adapted to provide expected outputs from each 
sensor in a group, which can then be compared to the real-
time measurements, and thereby provide a further simple 
mechanism for detecting unexpected sensor behaviour. 

IV. Conclusion 
In this paper, three approaches are investigated for 

sensor measurement reconstruction in an industrial system: 
1) PCA based missing value method; 2) SOMNN based 
technique; and 3) an AO method. The applied approaches 
are shown to be capable to and reconstructing sensor faults 

successfully. The efficacy of the presented approaches has 
been proved through the use of results from experimental 
trials. Signal reconstruction techniques can be used for fault 
detection and reconstruct faulted sensor signals, and thereby 
facilitate improved unit availability. Although the current 
study focuses on burner tip temperatures on industrial gas 
turbines, ultimately, the underlying principles are readily 
transferable to other complex industrial systems. 
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Figure 5.  Faulted signal reconstruction based on AO algorithm 

 

 
 

Figure 4.  Faulted signal reconstruction temperature measurements 
(S=Sensor) 

 


