

69

Proc. of The Third Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-064-4 doi: 10.15224/ 978-1-63248-064-4-15

Collision evasion method using auxiliary hash
Jeonghyeok Kim, Jaemin Hwang, Joohyeong Song, Jongsik Lee and Sanggil Kang

Abstract— In this paper, we develop a conflict-free index

generator to increase performance in a big data environment.

There are several problems with the conventional hash

functions, such as Minimal Perfect Hash Function (MPHF) on

dynamic systems like big data. The collision-free problem

occurs with an increase in the amount of data and the overhead

in securing additional space to solve this problem. To solve this

problem, we propose a collision evasion method using an

auxiliary hash. In this paper, we divide the data into two

categories by constructing a double hash to solve the problem.

Keywords—big data, conflict free, hash function, index

generation function

I. Introduction

Databases (DBs) for information systems have developed

rapidly since the 1990s. In particular, the DB plays a core role

in a company‟s information systems, such as enterprise

resource planning (ERP) [1], customer relationship

management (CRM) [2], and in data warehouses [3]. Also,

the DB is now used for big data systems. The most important

element is the index generation function for DB performance

improvement. The index generation function is a

multi-valued logic function that checks whether the given

input vector is registered or not, returning its index value if

the vector is registered. Index generation latency due to

overhead is critical. Minimal Perfect Hash Function (MPHF)

[4] is one of the index generation functions, which is widely

used for index generation. However, MPHF has two

problems. First, MPHF needs to restrict the input range in

order to prevent data conflict, but the input range is not

defined or limited in big data systems. Second, additional

overhead is required to control data conflict. This is not

efficient for a big data system.

To solve this problem, we propose a collision evasion

method using an auxiliary hash. The remainder of this paper

is organized as follows. Section 2 explains related works. In

Section 3, we describe our proposed collision evasion method

using an auxiliary hash. Section 4 demonstrates the collision

evasion method using an auxiliary hash. We conclude our

work in Section 5.

Jeonghyuk Kim, Jaemin Hwang , Joohyeong Song, Jongsik Lee and Sanggil

Kang

Inha University

Republic of Korea

II. Related Work

Studies of index generation functions have been widely

carried out. Index generation functions have been utilized for

various purposes, such as linear transformation, hash, and so

on. Index generation functions are just logic functions with n

inputs and ⌈log2 (k + 1) ⌉ outputs, where k is a registered

vector. Recall that the special value of „0‟ should be included

among the output values. Many researchers might use ordinal

logic synthesis methods. However, the normal logic synthesis

method is not good for random functions. Additionally, from

an application point of view, registered vectors may change,

and fixed gate circuits do not handle that situation.

Reconfigurable circuits such as field-programmable gate

arrays [5] could handle them, although they have overhead

resynthesizing the circuits. A naive way to implement index

generation functions is to use memory with an address line.

Of course, this is also not a good way. In many cases, the

number of registered vectors (= k) is far less than 2n, so there

would be a lot of „0‟ entries in memory [6].

Figure 1 Index generation unit

Figure 1 shows an index generation unit (IGU) [7]. The

linear circuit has n inputs and p outputs, where p < n. It

produces the following functions:

y1 = c1,1x1 ⊕ c1,2x2 ⊕ c1,3x3 ⊕• • •⊕c1,nxn

y2 = c2,1x1 ⊕ c2,2x2 ⊕ c2,3x3 ⊕• • •⊕c2,nxn

y3 = c3,1x1 ⊕ c3,2x2 ⊕ c3,3x3 ⊕• • •⊕c3,nxn

yp = cp,1x1 ⊕ cp,2x2 ⊕ cp,3x3 ⊕• • •⊕cp,nxn,

where c,i,j ∈ {0, 1}, and ci,i = 1. It is used to reduce the size

of main memory. Let X1 = (x1, x2, . . . , xp) and X2 = (xp+1,

xp+2, . . . , xn).

Main memory has p inputs and log2 (k+1) outputs. Main

memory produces correct indices only for registered vectors.

However, it may produce incorrect indices for non-registered

70

Proc. of The Third Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-064-4 doi: 10.15224/ 978-1-63248-064-4-15

vectors, because the number of input variables is reduced by

using “don‟t care” conditions. In an index generation

function, if the input vector is non-registered, then it should

produce 0 output. To check whether main memory produces

the correct index or not, we use AUX memory. AUX memory

has log2 (k +1) inputs and n − p outputs: it stores the X2 part

of registered vectors for each index. The comparator checks

whether the X2 part of the input is the same as the X2 part of

the registered vector. If they are the same, main memory

produces a correct index. Otherwise, main memory produces

an incorrect index, and the input vector is non-registered. In

this case, the output AND gates produce 0, showing that the

input vector is non-registered.

BLAKE is one candidate algorithm of Secure Hash

Algorithm 3 (SHA-3), meeting all standards set by the

National Institute of Standards and Technology, providing

security guarantees in theory and in practice. BLAKE is built

on the LAKE hash function family, with HAIFA as the

iteration mode and a local wide-pipe as its internal structure,

with the ChaCha [8] stream cipher as its core function.

BLAKE resists generic second-preimage attacks,

length-extension and side channel attacks [9].

However, these studies have two problems. First, the

normal logic synthesis method is not good for random

functions. Second, a hash function needs additional overhead

to control the data conflict. To solve these problems, we

designed a collision evasion method using an auxiliary hash.

In the following section, we propose the collision evasion

method using an auxiliary hash.

III. Collision evasion method

Figure 2 is the structure of our paper to evade an item

collision via hash. The structure consists of three parts:

methods of determining the optimum hash number,

configuring matches between item attributes and hashes, and

a method for determining the optimum index number.

Figure 2, as shown in the rightmost block constitutes a

majority of one or another independent hash functions that

can accommodate the entire index. For example, item

p1(iPhone) gets hash F1 and hash F2 in the Collision Free

Indexing (CFI) process, then reaches hash keys (F1: 1) and

(F2: 0). Finally, item p1 gets a unique index (F1: 1), as shown

by the solid line in the figure. Thus, in order to provide a hash

key only for every item p, it is necessary to specify the hash

number and the size of the index.

First, we discuss methods of determining the optimum

hash number.

It may be necessary to predict the hash through maximum

matching of bipartite graphs [10]. First, the input data set

makes a bipartite graph G hash function, where the resulting

set consists of P and F. Second, find the maximum matching

for G using the Hopcroft-Karp algorithm [11]. Third, if G is

the same size as the maximum match for P, then dividing the

F function matches. Last, if it is not the same, reconstitute G

with additional hash functions.

Next, configure matching between item attributes and

hashes.

First, f (,) is defined as a hash function where it is the set of

main item t and the set of a sub item p.

1. {X1} = (x1, x2,,xq) and {X2} = (x(q+1), x(q+2),,xn),

where q is ⌈log2 ((n+1)/3)⌉, and n is the number of all items.

2. While | | , insert the minimum result by
| () ()| into { }

from { }.

3. When randomly compared to replacing any , values

in the { }, { } group, if the number of collisions is reduced,

then exchange them.

4. Until | | , repeat steps 2-3.

Figure 2. Mainstream structure of our paper

71

Proc. of The Third Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-064-4 doi: 10.15224/ 978-1-63248-064-4-15

Figure 3 Method for determining the optimum index number

The next step is a method for determining the optimum

index number.

If the number of the indices assigned to the hash function is

reduced, afterwards, the probability of collision is low, but

the index is inefficient because of the presence of unused

indices. On the other hand, when the number of indices is too

low, that increases the chance of conflicts. Therefore, the

conflict should be configured to obtain the minimum number

of indices.

Figure 3 shows when the minimum number of item

attributes and hash functions is determined, and based on this,

indexing can be performed. First, for the input value P,

separate primary and secondary characteristic properties.

Second, endow main properties with the index via a hash

function. Third, compare the sub-values for the index value;

if they match, output the index value. Last, if it does not

match, the new item attribute is not in the existing index

value, so create an additional output after allocation.

IV. Experiment

As shown in Table 1, the equipment used for the CFI

experiments were an Intel Core i7-4790 processor with 12GB

DDR3 RAM and the Windows 8.1 operating system. Whole

key sets were randomly created, with a set of 1 million from a

word-collecting bot on the Internet and a set of 1 million

collected from a dictionary and web documents; the mean

length is 11 bytes, and the maximum length is 50 bytes. The

result is the average value measured after the hash function

was successfully repeated five times.

Table 1 Experiment Environment

CPU Intel Core i7-4790

RAM 12G DDR

OS Windows 8.1

Provided that the input key set is 500,000, the MPHF

technique handles 8156.6 key sets per second. With input of

two million, MPHF handles 8100 key sets per second.

Although the number of input key sets was not significant,

with higher numbers, the equipment tended to slow down a

little bit.

However, the CFI technique presented in this paper

handles 8944.5 key sets per second. Moreover, with input of

two million, CFI handles 11396.0 key sets per second. Unlike

MPHF techniques, we can see that the CFI process speeds up

gradually as the number of input key sets increases.

The above results indicate good performance for big data

processing. Compared with the conventional techniques (for

example, MPHF), the CFI technique is normally adapted to

processing growing amounts of data.

Table 2 MPHF time latency measurement

Key set (ea.) 50 100 150 200

Seek time (sec) 57.9 115.6 173.4 232.5

Time latency

 result (sec)
61.3 122.4 183.0 246.9

Table 3 CFI time latency measurement

Key set (ea.) 50 100 150 200

Seek time (sec) 52.5 92.6 125.9 161.1

Time latency

result (sec)
55.9 99.2 134.6 175.5

Tables 2 and 3 compare the MPHF technique‟s [12] and

the CFI technique‟s seek time and full-time measurement for

72

Proc. of The Third Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-064-4 doi: 10.15224/ 978-1-63248-064-4-15

time latency for several input levels. The results show similar

search times for 500,000, but with increasing numbers of key

sets, CFI‟s time latency is better than MPHF. So, these results

may apply to big data environments.

V. Conclusion

DBs and big data are essential to modern information and

communications technologies. Accordingly, we describe an

indexing scheme to distinguish data items accurately. And we

compensate for the problem with conventional MPHF by

proposing an auxiliary hash method for conflict-free index

generation. This method provides more accurate results for

classification of indexed big data, and is expected to reduce

the overall cost because it is conflict free.

In experiments, we proposed a structure for constituting a

number of hash functions for non-collision hash. Then, we

verified that the higher the amount of data, the faster the

processing speed. However, we could not check successive

addition of data sets for processing big data. Later, we will

improve the method in case that problem occurs.

The next study must resolve dynamic configuration for

item sizes in a big data environment. At this time, we will

have to conduct further studies for improvement in reducing

overhead that may occur.

Acknowledgment

This research was supported by Basic Science Research

Program through the National Research Foundation of

Korea(NRF) funded by the Ministry of

Education(NRF-2014R1A1A2056374)

REFERENCES
[1] Jun Han, Rongbi Liu, Brandon Swanner, Shicheng Yang,

“ENTERPRISE RESOURCE PLANNING “, umsl.edu, 2010

[2] PC Verhoef “Understanding the effect of customer relationship

management efforts on customer retention and customer share
development”, Journal of marketing, journals.ama.org, 2003

[3] LP English, “Improving data warehouse and business information

quality” , cds.cern.ch, 1999
[4] ZJ Czech, G Havas, BS Majewski, “An optimal algorithm for

generating minimal perfect hash functions”, Information Processing

Letters, 1992

[5] T. Sasao, “A Design method of address generators using hash

memories,” IWLS-2006, Vail, Colorado, U.S.A, June 7-9, 2006,

pp.102-109.
[6] Ashok Sudarsanam, Sharad Malik. 1995, ”Memory bank and register

allocation in software synthesis for ASIPs”, IEEE/ACM international

conference on Computer-aided design (ICCAD '95). IEEE Computer
Society, Washington, DC, USA, 388-392.

[7] T. Sasao., “On the number of variables to represent sparse logic

functions,” ICCAD-2008, San Jose, California, USA, Nov.10-13,
2008,. pp 45-51

[8] Salsa20,[EB/OL] http://en.wikipedia.org/wiki/Salsa20.2010

December.
[9] AUMASSON Jean-Philippe, HENZEN Luca, MEIER Willi, et.al,

SHA-3proposal BLAKE Round 2 Candidates, 2010 September.

[10] WL Xu, Z Tang, Z Chen, RF Li “Research of new index generation
algorithm based on hash function”, Software Engineering and Service,

2013

[11] T Sasao. “Index Generation Functions: Recent Developments”,
ISMVL, 2011 lsi-cad.com

[12] Hagyu Lee, "A Selecting-Ordering-Mapping-Searching Approach for

Minimal Perfect Hash Functions", Journal of korean institute of

information scientists and engineers, 2000.1, pp 41-49

73

Proc. of The Third Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-064-4 doi: 10.15224/ 978-1-63248-064-4-15

About Author (s):

Jaemin Hwang

received the bachelor‟s degrees in Computer Science from Inha University, South Korea in 2013,

respectively. He is currently a graduate student in the Department of Computer Science and

Information Engineering at INHA University, Korea. His research interests include System

Architecture, Network, Multimedia Systems, Database, etc.

Jeonghyeok Kim

received the bachelor‟s degrees in Computer Science from Inha University, South Korea in 2013, respectively. He

is currently a graduate student in the Department of Computer Science and Information Engineering at INHA

University, Korea. His research interests include Data mining, Inference Systems, etc.

Joohyung Song

received the bachelor‟s degrees in Computer Science from Inha University, South Korea in 2015, respectively. He

is currently a graduate student in the Department of Computer Science and Information Engineering at INHA

University, Korea. His research interests include Data mining, Database, Inference Systems, etc.

Sanggil Kang

received the M.S. and Ph.D. degrees in Electrical Engineering from Columbia University and Syracuse
University, USA in 1995 and 2002, respectively. He is currently an associate Professor in the Department of

Computer Science and Information Engineering at INHA University, Korea. His research interests include

Semantic Web, Artificial Intelligence, Multimedia Systems, Inference Systems, etc.

JongSik Lee

 received the B.S. and M.S. degrees at Department of Electronics Engineering from Inha University in 1993 and
1995. And, he received the Ph.D. degree at Department of Electrical and Computer Engineering from University

of Arizona in 2001. His research interests include Software modeling and simulation, Cloud computing, etc.

