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Abstract— In recent years, smart composite materials have 

been employed in various science and engineering applications 

such as aerospace structures, nondestructive testing devices, 

medical devices, and sensing and actuating applications. One of 

the most popular classes is a 1-3 piezocomposite that composes 

of homogeneous transversely isotropic piezoelectric cylinders 

embedded in an isotropic elastic material. The 1-3 

piezocomposites can produce higher electro-mechanical 

coupling effects, more conformable and less brittle than pure 

piezoelectric materials. For optimal design of these composites 

to meet high requirements in practical science and engineering 

applications, it is essential to know the effective properties that 

couple electromechanical properties of the composites. This 

paper is concerned with the development of an efficient 

methodology to determine the effective properties of smart 

composite materials with special emphasis on 1-3 

piezocomposites. A micromechanics theory based on a periodic 

microfield approach together with the boundary element 

method have been employed to calculate effective properties of 

the piezocomposites. A computer program has been developed 

based on the proposed solution scheme. Comparisons with the 

available existing solutions are performed to verify the 

accuracy of the developed solution scheme. Selected numerical 

examples are presented to demonstrate the capability of the 

present algorithm, and to show the influence of various 

parameters on the effective electro–mechanical properties of 

the composites. 

Keywords—Smart materials, Piezocomposites, Effective 

properties, Micromechanics, Boundary element method, 
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I.  Introduction 
Smart composites have drawn significant interest in 

recent years due to the rapid development in adaptive 
material system. There are many advantages to use 
composites over more traditional smart materials such as the 
possibility of weight or volume reduction, increase in 
ductility and enhanced coupling constant [1]. Because of 
increasing demands for extended application, smart 
composites have been developed to improve the material 
properties and overcome drawbacks of the bulk smart 
materials. The most popular class of smart composites is 
piezoelectric such as 1-3 piezocomposites that contain 
piezoelectric rods embedded in a polymer matrix and 
aligned through the thickness of the composite. Fig. 1 shows 
a typical 1–3 piezocomposite in which the piezoceramic 
constituent is continuous in one direction while the matrix 
material is connected in all 3 orthogonal directions. The 1-3 
piezocomposites can produce higher electromechanical 
coupling effects, more conformable and less brittle that pure 
piezoelectric materials. 
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For the optimal design of these composites to meet high 
requirements in practical engineering applications, it is 
essential to know the effective properties of coupled electro-
mechanical properties. Research on piezoelectric composite 
materials has been developed for predicting and simulating 
linear coupled electro-mechanical behavior. The method of 
calculation can be categories as analytical e.g. self-
consistent [2] and Mori-Tanaka [3]; and numerical method 
e.g. finite element method and boundary element method. 
Due to the complexity of the field equations of composite 
materials, semi-analytical or numerical approaches seem to 
be more capable than pure analytical counterparts. A finite 
modeling volume is a primary requirement to implement in 
numerical simulations and is generally referred as 
representative volume element (RVE) or a unit cell. Lee et 
al. [4] performed finite element analysis and 
micromechanics based averaging of a RVE to determine the 
effective properties of a coupled electro-magneto-elastic 
composite consisting of elastic matrix reinforced with 
piezoelectric and piezomagnetic fibers. Afterwards, 
Bondarev et al. [5] developed a special RVE to determine 
the piezoelectric composite properties containing tubular 
PZTs. Further, FEM was employed by Jafari et al. [6] for 
numerical simulations in study the overall properties of 
piezoelectric composite based on hierarchical multi-scale 
approach and study the influential parameters on the RVE 
concept. 

Polymer matrix

Piezoelectric fibers

 
Figure 1. Schematic of a 1-3 piezocomposite 

It should be mentioned that the FEM requires domain 
discretization in order to perform the analysis. In some 
cases, this results in both expensive computational demand 
and inaccurate numerical results, especially in solving fiber-
matrix problems with high local fluctuations. On the other 
hand, the boundary element method (BEM) based 
micromechanical analysis only involves the boundary 
discretization of the unite cell since the governing 
differential equation is satisfied exactly within the domain 
leading to a relatively small system with a sufficient 
accuracy. Therefore, a simple, accurate and economic 
feature of BEM can make the prediction more effectively. 
Qin [7] developed a micromechanical boundary element 
algorithm to predict the effective material properties of a 
bulk piezoelectric material with holes. The algorithm based 
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on two typical micromechanics model, the self-consistent 
and Mori-Tanaka methods, and the boundary element 
formulation. The algorithm was been growth to model a 
piezoelectric composite with inclusion of various shapes [8]. 
A micromechanics BEM algorithm was also applied to 
determine the effective properties electroelastic properties of 
transversely isotropic piezoelectric material containing 
randomly distributed voids by Wang et al. [9]. Recently, a 
periodic microfield micromechanics approach based on the 
BEM was proposed by Sapsathiarn and Senjuntichai [10] to 
calculate the effective properties of composite with periodic 
piezoelectric fibers. It was noted that the proposed BEM-
based micromechanics scheme was an efficient tool for a 
plane strain problem. 

The study of mechanics and effective properties of 1-3 
piezocomposites is important to further development and 
application of this class of materials. To the author’s 
knowledge, the determination of effective properties for the 
piezoelectric fiber-reinforced composites using BEM-based 
periodic microfield approach is currently not available in the 
literature for a complete set of coefficients for 3D problem. 
In this paper, an efficient methodology to determine the 
effective properties of smart composite materials with 
special emphasis on 1-3 piezocomposites is presented by 
employing the micromechanics theory and the boundary 
element method. 

II. Micromechanics Theory 
Micromechanics theory is a theory that relates macro and 

micro length-scale problems. The length-scales associated 
with macro and micro-levels are relative. At the macro-
level, the material properties are usually assumed to be 
sufficiently homogeneous, whereas at the micro-level i.e. at 
the level of the constituents, the material properties are 
always heterogeneous and consist of distinguishable 
components such as inclusions, grains and cavities. The 
periodic microfield approach for a micromechanical analysis 
has a key assumption on periodicity of the microstructure, 
which suggests that the whole macroscopic specimen 
consists of periodically repeated unit cells. Therefore, the 
physical and geometrical properties of the microstructure 
can be identified by a representative volume element (RVE) 
or unit cell. Various types of RVEs are possible for 
unidirectionally fiber reinforced composites. 

A typical unit cell of a 1-3 composite has a cross section 
that is either a square shape or a hexagonal shape as shown 
in Fig. 2(a) and 2(b) respectively that frequently employed 
in the literature [11]. To simplify the theoretical analysis of 
a unit cell, the square or hexagonal cross-section area is 
replaced by a circle of equal area and the height of the unit 
cell is equal to the thickness of the composites. Therefore, 
the unit cell of a 1-3 piezocomposite based on the concentric 
cylinder model is shown in Fig. 2 which consists of a 
piezoelectric solid cylindrical rod of radius a  surrounded by 

a polymer annular cylinder of outer radius b  and height 2h
. The basic and governing equations for the piezocomposite 
finite cylinder are presented in the next section. 

 

 

Piezoelectric fibers

Polymer matrix

a

b

 

(a) Square periodic unit cell 

a

b

 

(b) Hexagonal periodic unit cell 

Figure 2. The cross-section of piezocomposites and the RVE. 

III. Basic and Governing 
Equation 

Consider a piezocomposite cylinder of in radius a , outer 

radius b  and height 2h  under axisymmetric 

electromechanical loading applied to the boundary is shown 
in Fig. 3. The composite material consists of piezoelectric 
rods embedded in a polymer matrix and aligned through the 
thickness of the composite. The constitutive equations for 
piezoelectric material polarized in the z -direction without 
body force and electric charge can be written as 

 
rr  = 

11 12 13 31rr zz zc c c e E  ε ε ε  (1) 

   = 
12 11 13 31rr zz zc c c e E  ε ε ε  (2) 

 
zz  = 13 13 33 33rr zz zc c c e E  ε ε ε  (3) 

 rz  = 44 152 rz rc e Eε  (4) 

 rD  = 15 112 rz re Eε  (5) 

 
zD  = 

31 31 33 33rr zz ze e e E   ε ε ε  (6) 

where ij , ijε ,
iD  and 

iE  are the components of stress, 

strain, electric displacement and electric field, respectively. 

11c , 
12c , 

13c , 
33c  and 

44c  are elastic constants under zero or 

constant electric field. 15e , 31e and 33e  are piezoelectric 

coefficients. 11  and 33  are dielectric constants under zero 

or constant strain. The components of strain and electric 
field can be expressed as 

 rrε  = ru

r




 (7) 

 ε  = ru

r
 (8) 

 zzε  = zu

z




 (9) 
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rzε  = 

1

2

r zu u

z r

  
 

  
 (10) 

where ( , )ru r z  and ( , )zu r z  denote the mechanical 

displacements in the r  and z -direction, respectively. In 

addition, the relationship between the electric field 
iE (

,i r z ) and the electric potential ( , )r z  is given by 

 
rE  = 

r





 (11) 

 
zE  = 

z





 (12) 

The equilibrium equations for a piezoelectric cylinder 
subjected to axisymmetric end loading can be expressed as 

 rrrr rz

r z r

    
 

 
 = 0 (13) 

 rz zz rz

r z r

   
 

 
 = 0 (14) 

 r z rD D D

r z r

 
 

 
 = 0 (15) 

Combination the constitutive equations Equations. (1)-(12) 
with the equilibrium equations (13)-(14) results in the set of 
governing equations expressed in terms of the displacements 
and the electric potential. The potential function 
representation is introduced to uncouple the governing 
equations. The general solutions of finite solid and annular 
piezoelectric cylinders are given by Senjuntichai et al [12] 
and Rajapakse el al. [13] respectively. The case of a 
transversely isotropic elastic medium is obtained by setting 

ije  and ij  in (1)-(6) to zero and dropping (15) from the 

equilibrium equation. 

         

x

z

a
b

h
hPiezoelectric rod 

Polymer matrix

r



 

Figure 3. Idealized unit cell of 1-3 piezocomposite and coordinate system. 

The boundary conditions for the composite cylinder 
under axsymmetric loading can be expressed as 

 ( , )f

zz r h   = ( )f

zz r  for  0 r a   (16) 

 ( , )f

rz r h   = ( )f

rz r  for  0 r a   (17) 

 ( , )f

zD r h  = ( )f

zD r   for  0 r a   (18) 

 ( , )m

zz r h   = ( )m

zz r  for  a r b   (19) 

 ( , )m

zr r h   = ( )m

rz r  for  a r b   (20) 

 ( , )m

rr b z  = ( )m

rr z  for  h z h    (21) 

 ( , )m

rz b z  = ( )m

rz z  for  h z h    (22) 

Note that superscripts f  and m  are used to denote the 

quantities associated with the piezoelectric fiber and 
polymer matrix respectively. Along the fiber-matrix 
interface which the bond between the fiber and matrix is 
perfect, the continuity of displacements and traction is 
required. Therefore, 

 ( , )f

rr a z  = ( , )m

rr a z  for  h z h    (23) 

 ( , )f

rz a z  = ( , )m

rz a z  for  h z h    (24) 

 ( , )f

rD a z  = 0 for  h z h    (25) 

 ( , )f

ru a z  = ( , )m

ru a z  for  h z h    (26) 

 ( , )f

zu a z  = ( , )m

zu a z  for  h z h    (27) 

where f

ij  and 
f

zD  are the traction and electric charge 

applied on the reinforced piezoelectric fiber respectively; 
m

ij  is the traction applied on the transverse isotropic elastic 

matrix. The boundary element method based periodic 
microfield approach is performed for evaluation of effective 
material properties. The boundary conditions of the periodic 
unit cell are discretized to determine the Green’s function. 
The procedure for determination of the Green’s function is 
presented in next section.     

IV. Boundary Element Analysis 
of Unit Cell 

The unit cell of 1-3 piezocomposite as shown in Fig. 3 
consists of a two-domain i.e. a reinforced piezoelectric fiber 

domain 
1  with boundary 

1  and a transversely isotropic 

elastic matrix domain 
2  with Boundary 

2 . The boundary 

integral equations for each sub-domain are performed. 
Thereafter, a global equation system for the whole domain 
of the unit cell is assembled by considering the interface 
continuity condition between fiber and matrix. The 
boundary integral equation for piezoelectric fiber with 

domain 
1  and boundary 

1  can be written as 

( ') ( ')ic ux x =

1

( ; ') ( ) ( ; ') ( ) ( )ji j ji jG H u d


    x x x x x x x  (28) 

where , ,i r z q  and the summation is implied on the index 

, ,j r z q ; x  and 'x  denote a field point and a load point 

respectively; jiG  and jiH  denote the displacement and 

traction components respectively in the j -direction (

,j r z ) due to a unit concentrated line load applied in the 

i -direction ( ,i r q ); qiG  and qiH  denote the electric 

potential and electric charge respectively due to a unit 

concentrated line load applied in the i -direction; jqG  and 

jqH  denote the displacement and traction components 

respectively in the j -direction due to a unit electric line 

charge; qqG  and qqH  denote the electric potential and 

electric charge respectively due to a unit electric positive 
charge. Closed form Green’s functions for line loads and a 
line electric charge can be determined as mention in the 
preceding section.  

A similar boundary integral equation can be 
established for for transversely isotropic elastic matrix with 



 

55 

Proc. of The Third  Intl. Conf. on Advances in Civil, Structural and Environmental Engineering - ACSEE 2015 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-065-1 doi: 10.15224/ 978-1-63248-065-1-42 

 

domain 
2 . The final boundary element equation for whole 

domain   of the unit cell can be obtained by assembling 

the sub-domain 
1  and 

2 together with the consideration 

the interface continuity conditions between the fibers and 
the matrix. The unknown terms and the known terms are 
then rearranged to the left-hand side and the right-hand side 
respectively. The numerical integrations for the functions G  

and H are carried out. The global equation system becomes 
a set of following linear algebraic equations 

   A X  =  B  (29) 

where  X  is the vector unknown nodal displacements 

(or tractions), electric potential (or electric charge) at 

boundary nodes;  B  is the contribution to the equation 

system due to prescribed nodal boundary values; and  A  is 

the known coefficient matrix. Finally, the unknown nodal 
values of the displacements (or tractions), electric potential 
(or electric charge) can be obtained by solving (29). 

V. Determination of Effective 
Coefficients 

The macroscopic response of composites can be 
determined using the micromechanics theory based on the 
analysis of RVE and the multi-BEM formulation presented 
in the preceding section. The periodic microfield approach 
should be mention in this study to determine the effective 
material properties of electro-magneto-elastic composites. 
According to micromechanics theory, the macro-stress, σ , 

and macro strain, ε , of the composites can be defined as the 

volume average stress in a RVE as follows 

 σ  = 
1

d
V



σ  (30) 

 ε  = 
1

d
V



ε  (31) 

where   is the domain of RVE and V  is its volume. 

Similarly, the average electric displacement and electric are 
defined as follows:  

 D  = 
1

d
V



D  (32) 

 E  = 
1

d
V



E  (33) 

The macroscopic constitutive relation of this composite can 
then be expressed in terms of the macro stress and the macro 
strain as 

 
 
 
 

σ

D
 = 

* *T

* *

   
  
   

εc e

Ee η
 (34) 

where the superscript asterisk (
*

) indicates the effective 
material properties of the composites. In order to determine 
the effective properties of three-phase electro-magneto-
elastic composite, four independent uniaxial constant strain 
states and two independent uniaxial constant electric field 
state are individually applied to the RVE. By applying the 
six independent states to the RVE, six sets of the left-hand 
side vector in (34) can be performed as follow 

*

*

 
 
 

σ

D
 = 

* *T *

* * *

0

0

   
   

    

c e ε

e η E
 (35) 

where 
*

σ  and *
D denote six vector sets of σ  and D  

respectively due to apply the uniaxial constant strain states 
*
ε  and uniaxial constant electric field states *

E . In addition, 
*
ε  and *

E  are diagonal matrixes. Therefore, the 6x6 

effective matrix of the two-phase electro-elastic composites 
is easily determined.   

VI. Conclusion 
The micromechanics theory based on the periodic 

microfield approach and the boundary element method 
presented in this study have been proposed the appropriate 
and efficient method to determine a complete set of 
coefficients of 3D model in smart composites. The BEM-
based micromechanics scheme is a productive tool for 
numerical evaluate of the effective properties due to the 
implementation of surface variable in the averaging process 
instead of volume averaging. Future work may present the 
influence of coupled electro/magneto/thermo-mechanical 
properties of the smart composite materials. 
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