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Abstract— Sampling-based motion planning algorithms 

have been proven to work well with difficult planning tasks in a 

variety of problems. Recently, asymptotic optimal algorithms 

have been proposed to overcome the non-optimality 

inefficiency of these planners but with extra computational 

costs associated with the additional processing requirements. 

In this paper, new extensions of optimal sampling-based 

motion planning algorithms are presented which overcome this 

drawback by utilizing the Poisson-disk sampling distribution. 

The proposed planners replace the original uniform sampling 

with the Poisson-disk sampling by defining a sampling radius 

along with the neighborhood radius in the original optimal 

planners. The main advantage of the proposed planners is their 

ability to reach different levels of optimality with fewer 

sampling attempts which reduces the running time of the 

planner significantly. The proposed algorithms have shown to 

solve different motion planning tasks with considerably smaller 

set of samples. The simulation studies have been conducted and 

support the superiority claim of the proposed algorithms. 

Keywords—robotics, motion planning, sampling, poisson-

disk, optimal planning 

I.  Introduction 
Motion planning is a key problem in robotics that has 

motivated research since the past three decades. The goal of 
robot motion planning is to decide automatically what 
motions a robot should execute in order to achieve a task 
specified by initial and goal spatial arrangements of physical 
objects [1]. Due to widespread applications of motion 
planning in different fields such as computer games, 
animation, assembly planning and computational biology 
[2], there have been a great number of studies on motion 
planning algorithms in recent years. The simplest form of 
the motion planning problem is planning a collision-free 
path for a robot made of an arbitrary number of polyhedral 
bodies among an arbitrary number of polyhedral obstacles, 
between two collision free positions of the robot. 
Complexity analysis has shown this problem to be PSPACE-
complete [3]. By taking into account the physical properties 
and actuator limitations in a real robot, it is not known if the 
problem is even decidable except for some particular cases 
[4]. Some of the well-known complete motion planning 
algorithms are cell decomposition and visibility roadmaps 
[5]. For practical purposes, complete algorithms turn out to 
be computationally expensive and hard to implement.  
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Adding various restrictions to the problem made the use 
of complete algorithms [6] possible. For the general case of 
the problem, a breakthrough was achieved with the 
development of sampling-based motion planners [5]. 
Sampling-based motion planning algorithms have been used 
for solving planning problems with high degrees of freedom 
with proven capability and advantages. These algorithms do 
not require a complete representation of the configuration 
space; instead, they solely rely on a simple procedure which 
can decide whether a given configuration is collision-free or 
not. These planners are unique in the fact that planning 
occurs by sampling the configuration space of the robot. 
Generally, sampling-based algorithms can be divided into 
two main groups namely multi-query and single-query. In 
the multi-query class, the configuration space is sampled in 
a learning phase and then the resulted graph will be used to 
solve any given query. The basic and most important multi-
query planner is the Probabilistic Roadmaps (PRM) 
algorithm [7, 8]. 

One of the fundamental inefficiencies of sampling-based 
algorithms is that they normally produce suboptimal 
solutions that peregrinate inside the configuration space. It 
has been recently shown that RRT almost surely does not 
find an optimal solution [9]. Therefore, the optimal versions 
of PRM and RRT algorithms i.e. PRM* and RRT* have 
been designed and shown to be asymptotically optimal, with 
the probability of finding the optimal solution approaching 
unity as the number of iterations approaches infinity. The 
RRT* planner possesses a unique ability which is capability 
of finding the optimal path from the start position to every 
configuration inside the free space [9]. 

The basic issue with these optimal sampling-based 
algorithms is the high computational time requirement. The 
PRM* and RRT* planners require additional computational 
time for selection of neighbor nodes. Furthermore, the RRT* 
algorithm performs a rewiring procedure to eliminate the 
non-optimal paths which increases the runtime of the 
planner. This issue has been pointed out as a drawback for 
the optimal sampling-based planning [10, 11]. Recently, few 
attempts have been made to improve the performance of the 
RRT* algorithm in terms of computational time. The 
informed RRT* algorithm [12] has been proposed which 
grows the RRT* tree only in an ellipsoidal subset of the 
configuration space. Although the resulted planner is faster 
than the RRT*, but it loses the ability of reaching every 
configuration in the space. Another extension of RRT* has 
been introduced which is a bi-directional version of optimal 
RRT [13] and grows two trees from start and goal 
configurations in order to speed up the convergence of the 
planner. This algorithm also sacrifices the multi-goal 
property of the RRT*. Combining the asymptotic optimality 
of the PRM*/RRT* planners with low computational 
requirement property seems to be a very challenging task. 
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In this paper, a new sampling strategy for PRM* and 
RRT* algorithms is proposed which utilizes the Poisson-
Disk sampling strategy [14] to reduce the size of the 
required graph/tree. The proposed planner is able to capture 
the connectivity of the obstacle-free configuration space 
with significantly less number of samples. The proposed 
sampling strategy can be stated as follows: each generated 
sample should satisfy an additional condition i.e., it should 
be far enough from the other samples. This sample 
acceptance condition makes the resulted graph/tree to be 
more sparse and capable of learning the whole free-space 
with less number of samples and accordingly requires less 
computational time. The performance of the proposed 
sampling strategy is presented in Figure 1 where normal 
PRM* and the proposed algorithm have been used to 
construct a graph with 200 nodes in a simple 2D 
environment with three polygonal obstacles.  

II. Background 

A. Problem Formulation 
The problem is defined similar to [9]. Let Q_free be the 

obstacle-free subset of the configuration space Q with 

dimension d. A feasible path can be defined as ω:[0,1]→
Q_free such that ω(0)=q_start and  ω(1)=q_goal if such 

path exists. A feasible path ω^*  is optimal if for a cost 

function c, c(ω^* )=min⁡{c(ω),if ω is feasible} if such path 
exists. A common cost function can be defined as the sum of 
the Euclidean distance between each consecutive segment of 
ω. Let ω_ibe the i^th segment of the path ω, then the cost 
function can be defined as: 

  ∑           
   
                            (1) 

Where       denotes the Euclidean distance between   
and  . In the context of sampling-based motion planning, 
these path segments can be defined as the distance between 
two neighbor nodes in the graph/tree which belong to the set 
of the nodes in the final solution. 

B. PRM*/RRT* 
The optimal PRM algorithm is similar to the standard 

PRM with only one difference, i.e. connections are 
attempted between roadmap vertices that are within a radius 
  as a function of  . 

  ( )   ,   ( )  ⁄ -  ⁄                        (2) 

   (    )⁄   ⁄
, (     )   -⁄   ⁄

             (3) 

Where,   is the cardinality of the set of samples,   is the 
dimension of the space,  (     ) is the Lebesgue measure 

and    is the volume of the unit ball in the  -dimensional 
Euclidean space. This connection radius decreases with the 
number of samples and the decay rate is such that the 
average number of connections attempted from a roadmap 
vertex is proportional to      ( ) . In the RRT* algorithm, 
initially performs similar to the classic RRT planner. It adds 
new points      to the vertex set but also considers 
connections from      to its close neighbors within a radius 
  ( ) which can be formulized as follows. 

  ( )      * ,   ( )  ⁄ -  ⁄      +               (4) 

   (    )⁄   ⁄
, (     )   -⁄   ⁄

              (5) 

Where,      is the constant appears in the local steer 
function. However, an edge is created from           to 

     if they can be connected along a path with minimum 
cost, i.e.  (  )  and new edges are created from      to 
          if the path through      has lower cost than the 

path through the current parent. In this case, the edge linking 
          to its current parents is deleted to keep the tree 

structure. The main improvement in PRM* is in line 4 of 
Algorithm 1 where the connection between neighbor nodes 
are attempted only if they are closer than   ( ). In the RRT* 
algorithm, the improvements are in lines 12-16 and 17-20 in 
Algorithm 2 where first, an edge is connected only if it can 
reach the current point through a path with minimum cost 
and second, if there is any other nodes in the neighborhood 
of the current node with lower cost, this node will replace 
the current parent of the current node. These improvements 
utilize the PRM/RRT planners with the ability to find the 
shortest path. However, there will be substantial 
computational cost associated with the improved planners. 
This additional cost appears in PRM* when the neighbor 
nodes are checked to be within a fixed distance and it 
happens in RRT* when the corresponding paths of the 
neighbor are checked for cost improvement and also in the 
rewiring procedure. 

Recently, some extensions of PRM*/RRT* have been 
proposed to improve the computational cost of the planner. 
An intelligent method has been proposed [14] that 
deactivates unpromising parts of the configuration space to 
improve the execution time of the PRM planner. A 
connectivity-based approach has been introduced [15] that 
enhances the sampling procedure by biasing the sampling 
towards difficult parts of the space. Also, a speeding up 
method has been reported [16] based on the locality-
sensitive hashing technique to approximate the neighbor 
search procedure of the sampling-based algorithms. 
Although these methods have shown pleasant performances, 
their performances degrade as the dimension of the 
configuration space increases. Moreover, they require more 
accurate information about the configuration space which is 
a costly requirement. For single-query optimal planners, an 
informed RRT* algorithm has been proposed [12] which 
makes the sampling to focus on an ellipsoidal subset of the 
configuration space which includes the two inputs of the 
query. A bidirectional RRT* has been introduced [13] that 
grows two optimal trees rooted at the query inputs in order 
to find the optimal solution as soon as possible. Despite the 
considerable performance of these planners, they suffer from 
a basic drawback, i.e. the powerful ability of the tree-based 
planners in finding a path to different states of the space is 
sacrificed in order to lower the runtime of the planner. 

C. Poisson-Disk Sampling 
The algorithm presented in this paper utilizes the 

Poisson-Disk sampling strategy for generating the collision-
free samples for optimal sampling-based planning. Poisson-
disk distributions are known to have excellent blue noise 
characteristics and desirable in sampling patterns. The basic 
idea is to assign a circular area around each sample and 
forbid any further sampling in the corresponding regions of 
the current set of samples [14]. There are two basic Poisson-
disk sampling strategies namely normal sampling and 
maximal sampling. In normal sampling, the whole area is 
not going to be covered and the sampling terminates after 
certain amount of iterations, i.e. desirable size of the graph. 
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On the other hand, for generating a maximal Poisson-disk 
distribution, the whole sampling area should be covered by 
samples. Later, we will show that the generated set of 
samples for the proposed method does not need to be 
maximal.  

Assume a current set of samples denoted by    *   
(     )        +. A sampling radius is associated with 
each member of     which determines the minimum space 
between any two samples. Let    be the sampling radius. A 
set of samples is considered to follow a Poisson-disk 
distribution if they satisfy the following condition for any 
pair of samples. This simplest form of the problem is 
sometimes referred to as the “dart throwing problem”. 

          
                                   (6) 

Although the Poisson-disk samples are known to have 
excellent performances, they are generally regarded as too 
computationally expensive to generate in real time [14]. To 
overcome this difficulty, several techniques have been 
proposed in the past each of which, utilize a heuristic idea to 
reduce the computational complexity of this sampling 
distribution. A spatial data structure has been introduced for 
fast Poisson-disk sampling [17] based on representing the 
sampling area by a set of disjoint scalloped sectors. This 
method has been proved to run in  ( ) time and space. A 
fast Poisson-disk sampling method has been proposed which 
permits generation of samples in  ( ) time by initializing 
an  -dimensional background grid over the sampling 
domain [18]. A simple algorithm has been introduced for 
generating maximal Poisson-disk samples in  (     ) 
time using the concept of Voronoi diagram [19]. Another 
fast approach for generating Poisson-disk samples has been 
proposed which intelligently excludes the areas which are 
known to be covered by current samples [20]. In [21], an 
efficient sampling strategy has been introduced for 
generating maximal and unbiased Poisson-disk samples over 
bounded non-convex domains. This method initially uses a 
background grid of square cells for sampling and completes 
the maximal covering by calculating the connected 
components of the remaining uncovered sectors. Generating 
uniform base grids have been proposed in an algorithm for 
fast maximal Poisson-disk sampling [22]. The size of the 
grids will be further reduced to maintain the maximally of 
the samples. Recently, an effective algorithm has been 
proposed which takes a non-maximal set of Poisson-disks 
and improves it to reach the maximal property [23]. The key 
idea is to convert the complicated problem of plain or space 
searching into a simple searching on circles or spheres.  

The presented algorithm in this paper utilizes the 
excellent sampling properties of the Poisson-disk 
distribution to improve the computational requirements of 
the optimal sampling-based algorithms. Two new extensions 
of PRM* and RRT* algorithms are proposed with the ability 
to solve the planning queries with significant reduction in 
the size of the graph/tree while maintaining the asymptotic 
optimal property of the planner. 

III. proposed algorithm 
The proposed algorithm works similar to the original 

PRM*/RRT* planners. The only difference is in the 
sampling procedure. While the original planners let any 
collision-free samples to be added to the structure, the 
proposed extensions contain an additional checking stage 

which ensures that the samples possess the Poisson-disk 
distribution property. Among all efficient techniques for 
generating fast Poisson-disk samples, in this research, the 
boundary sampling technique [17] is being used for 
generating the Poisson-disk samples because of its 
simplicity and ease of implementation. In this method, a 
sample’s available neighborhood collapses to a collection of 
circular arcs centered at the sample and with the radius 
of    . By directly implementing this method, the available 
neighborhood is presented as a set of per-point angular 
ranges at which a point can be placed on the boundary. 
Figure 1 illustrates the sampling procedure as proposed in 
[17] where the gray circles represent the Poisson-disks and 
the green regions represent the forbidden sampling areas. 
After the first rejection, the boundary of the union of the 
forbidden regions will be selected and a random point is 
generated accordingly as shown by the orange circle. The 
sampling radius is defined as follow. 

  ( )   √      ⁄                            (7) 

Where   is a scaling constant ranging within (   -. The 
idea behind the sampling radius is that for filling an obstacle 
free square space with n disks with radius   , the volume of 
the space should be approximately equal to  (  ) . Forcing 
the samples to follow the Poisson-disk distribution usually 
reduces the number of samples. In other words, it is almost 

impossible to find n samples with  √      ⁄  distance from 

one another with a randomized sample generator.  
 

 

Figure 1. The implementation of the boundary sampling in a simple 2D 
environments with three obstacles. The new sample (orange circle) will be 

generates on the boundary of the union of forbidden region after the 

occurrence of the first rejection. 

 

After generating the Poisson-disk samples, the algorithm 
will proceed exactly as the original PRM*/RRT* does.  One 
important fact about the performance of the proposed 
algorithm is the relation between the neighborhood and 
sampling radiuses. It is vital for   ( )  to be smaller 
than   ( ). Otherwise, no connection can be made between 
different nodes and the resulted graph/tree will not be able to 
be constructed. Figure 2 shows the relation between these 
two radiuses along with the ratio of    ( ) over    ( ). 

According to the definitions of neighborhood and 
sampling radiuses, the cardinality of the graph/tree should 
follow the following rule: 

      
  ⁄                                 (8) 
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This criterion ensures that there will be at least one 
sample within the neighborhood region of the current 
sample and with eligibility to be connected. Recalling the 
range of  , i.e. (   -, one can conclude that in a 2D space, 
the sampling radius is smaller than the neighborhood radius 
if    . 

 

 

 
Figure 2. Different values for naighborhood and sampling radiuses and the 

corresponding ration for  (     )    and    . For    , the 
neighborhood radius is always greater than the sampling radius. 

 

Another noteworthy property of the proposed algorithm 
appears in the RRT* planner where the steering parameters 
in the original RRT* which is      will be spontaneously 
replaced by the sampling radius. According to the previous 
discussion about the Poisson-disk sampling procedure and 
the method that have been used, the samples are generated 
randomly on the boundary of the current Poisson disks. 
Therefore, the maximum distance between samples will 
exactly be equal to the sampling radius and the edge 
between any two neighbor samples is less or equal to   ( ). 
As stated in section II, the cost of the optimal path can be 
defined by summing up the Euclidean distance of all 
segments of the optimum path. The cost of the optimal path 
in the proposed algorithms can be calculated as follows. 

  (  )  ∑       
    

   

                             (9) 

 

Where    is the number of nodes in the optimal path. 

Considering the fact that ‖    
    

 ‖    ( ), now it is 
possible to find an upper bound for the path of the optimal 
solution. 

 (  )      ( )                           (10) 

This upper bound solely depends on the number of nodes 
in the final solution. On the other hand, reducing the total 
number of samples ( ), will decrease the number of samples 
in any solution. Therefore, one may conclude that selecting 
the samples from a Poisson-disk distribution will reduce the 
cost of the final solution or at least keeps the asymptotic 
optimality property of the planner. Figure 3 illustrates the 
graph construction phase for the PRM* planner. 

IV. Simulation Studies 
The proposed algorithms have been simulated in MatLab 

R2013a on a computer with Intel Core i5 CPU @ 3479GHz 
and 8 GB of RAM. Five 2D environments have been created 
and used for testing the performance of the proposed 
algorithms including one plain environment without any 
obstacle, two simple workspaces with three obstacles, one 
maze environment and finally an environment with a narrow 

passage with the tenuity factor of              ⁄ . The 
performances of the proposed algorithms are shown in 
Figure 4 where the final path is shown by blue lines and the 
start and goal configurations are illustrated by yellow and 
green squares respectively.  

 

 
 

Figure 3. The performance of the proposed algorithm (PRM*). Sampling 

and neighborhood radiuses are illustrated in a simple 2D environment. 
Current sample (blue circle) is being connected only to the neighbors within 

the neighborhood radius r*(n) while the samples follow the sampling radius 

rs(n) associated with the Poisson-disk sampling. Eligible neighbor nodes are 
depicted by green circles. 

 
The proposed extensions of the original PRM*/RRT* 

planners efficiently solve the planning queries with a 
significant reduction in the number of required samples. The 
generated paths are almost optimal and the entire 
configuration space has been covered by the samples by 
means of the Poisson-disk property of the graph/tree. The 
most difficult problem is the last workspace in Figure 5 
where the environment includes a narrow passage which is a 
classic dilemma for sampling-based algorithms. The 
proposed algorithms efficiently find the entrance of the 
narrow passage and successfully connect other parts of the 
workspace through this narrow region. The classic PRM* 
planner requires around 400 samples for solving this 
problem while the proposed algorithm solves this narrow 
passage query with approximately 250 nodes. 

Total simulation results are presented in Table 1. Note 
that for asymptotic optimal planners, i.e. PRM*, RRT*, 
PRM*_Poisson_Disk and RRT*_Poisson _Disk, the table 
only shows the results for 95% of optimality to present the 
minimum number of samples required to solve the query 
successfully. For the original PRM and RRT planners, 
maximum obtained optimality is given. These results are 
averaged over 1000 iterations for each planner to provide a 
more realistic conclusion about the performances. 
According to these results, the proposed planners 
successfully solve the given planning queries with smaller 
graphs/trees. For instance, consider the second environment 
(Simple 1) where a point robot is moving in a workspace 
with three simple obstacles. The classic PRM and RRT 
planners require at least 300 samples to reach the optimality 
rate around 75% and the original PRM* and RRT* 
algorithms reached the 95% optimality with 200 nodes while 
the proposed planners the same level of optimality with 100 
and 150 nodes for multi and single-query cases. 
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Figure 5 illustrates different levels of optimality based 
on the number of samples for multi and single-query 
planners and it shows that for obtaining any level of 
optimality the proposed planners require smaller 
graphs/trees. For example, in order to reach 80% of 
optimality, the PRM* and RRT* require more than 600 
samples while the proposed algorithms are able to reach this 

level of optimality with less than 400 samples. Even for a 
fixed number of samples, the proposed planners outperform 
the original PRM* and RRT*. Consider the value of 
optimality with 500 nodes in Figure 5. The original optimal 
planners at most can achieve 75% optimality rate using 500 
nodes while the proposed algorithms can reach up to 90% of 
optimality with the same number of samples.

 

 
                      Plain                                       Simple 1                                    Simple 2                                        Maze                                        Narrow 

(a) 

 
                      Plain                                       Simple 1                                    Simple 2                                        Maze                                        Narrow 

(b) 
Figure 4. The performance of the proposed algorithms in five different test environments. (a) The PRM* planner with Poisson-disk sampling distribution 

which used around 200 nodes in each environment. (b) the performance of the proposed extension of RRT* algorithm in test problems.each problem has been 

solved using approximately 1000 samples. Final paths are illustrated by blue lines and the query pair are shown by yellow and green squares. For all 

problems    .  

 
 

TABLE 1: SIMULATION RESULTS FOR THE MULTI-QUERY PLANNERS 

 PRM PRM* PRM*_Poisson_Disk 

Problem 
Optimality Runtime 

nmin 
Optimality Runtime 

nmin 
Optimality Runtime 

nmin 
Mean S.t.d Mean S.t.d Mean S.t.d Mean S.t.d Mean S.t.d Mean S.t.d 

Plain 81.2 3.7 2.4 1.12 100 95 - 2.9 0.5 50 95 - 2.8 0.5 30 

Simple 1 72.7 4.8 5.7 1.18 300 95 - 5.9 0.6 200 95 - 6.1 0.5 100 
Simple 2 68.5 3.7 6.1 1.85 400 95 - 7.5 0.5 250 95 - 7.3 0.6 150 

Maze 72.2 3.4 8.1 2.1 400 95 - 9.5 0.8 200 95 - 8.8 0.8 180 

Narrow 70.4 6.3 12.6 3.5 600 95 - 15.4 1.1 400 95 - 16.4 0.9 250 

 

TABLE 2: SIMULATION RESULTS FOR THE SINGLE-QUERY PLANNERS 

 RRT RRT* RRT*_Poisson_Disk 

Problem 
Optimality Runtime 

nmin 
Optimality Runtime 

nmin 
Optimality Runtime 

nmin 
Mean S.t.d Mean S.t.d Mean S.t.d Mean S.t.d Mean S.t.d Mean S.t.d 

Plain 86.7 2.9 2.1 1 100 95 - 3.6 0.4 100 95 - 3.5 0.5 100 

Simple 1 78.1 3.3 4.3 1.2 300 95 - 6.5 0.3 200 95 - 6.6 0.4 150 
Simple 2 74 3.3 5.7 1.5 400 95 - 8.6 0.5 300 95 - 8.9 0.3 200 

Maze 77.7 3.1 6.9 1.6 400 95 - 9.9 0.8 300 95 - 9.7 0.2 200 

Narrow 75.8 3.4 11.6 1.9 600 95 - 12.8 1.1 350 95 - 12.4 1.1 250 

 

V. Conclusion 
In this paper, new extensions of the original optimal 

sampling based motion planning algorithms, i.e. PRM* and 
RRT* have been proposed to reduce the computational 
requirements of these planners. These extensions utilize the 
Poisson-disk sampling distribution to spread the samples 
more equally inside the configuration space. A sampling 
radius   ( )  is defined and instead of sampling points, 

random disks will be generated which is not able to overlap 
other disks. This property is added to PRM* and RRT* 
planners and the new algorithms contain two important 
concepts. First, the neighborhood radius which was 
proposed to improve the length of the generated paths, and 
second, the sampling radius which is proposed to reduce the 
running time of the process. The proposed algorithms have 
been simulated and tested in different environments against 
the classic PRM and RRT as well as the original PRM* and 
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RRT* planners. Simulation studies show the superiority of 
proposed planners in all tested problems. In terms of 
minimum required number of samples, the proposed multi-
query planner has improved the classic PRM with 77% and 
the PRM* with 45%. The proposed single-query has 
reduced the minimum number of nodes to 63% and 25% for 
RRT and RRT* respectively. These results have been 
averaged over all testing problems.  

 

 

Figure 5. The minimum number of samples needed to reach different levels 
of optimality for (a) PRM* and PRM*_Poisson_Disk and (b) RRT* and 

RRT*_Poisson_Disk. The results are averaged over all seven cases 
presented in Figures 5 and 6 for 1000 iterations. 
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