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Abstract—In the present work, the static analysis of non-

planar coupled shear walls with any number of stiffening 

beams has been considered. The properties of the connecting 

beams and the cross-sectional area of the piers are also 

assumed to be varying stepwise in the vertical direction. The 

analysis is based on the Continuous Connection Method 

(CCM), in conjunction with Vlasov’s theory of thin-walled 

beams. A computer program has been prepared and using this 

computer program an asymmetrical example has been solved 

and compared with the solutions found by the frame method 

and a perfect match has been observed. 

Keywords—static analysis, non-planar, coupled shear wall, 

stiffening beam, cross-sectional change, continuous connection 

method. 

I.  Introduction 
In this paper, the static analysis of a non-planar coupled 

shear wall, resting on a rigid foundation, is studied. 
Employing a time saving computation procedure, the 
presented method is suitable for the pre-design and 
dimensioning of coupled shear wall structures. When the 
height restrictions prevent connecting beams from fulfilling 
their tasks of reducing the maximum bending moments at 
the bottom and the maximum lateral displacements at the 
top, beams with high moments of inertia, called “stiffening 
beams”, are placed at certain heights to make up for this 
deficiency. Stiffening of coupled shear walls decreases the 
lateral displacements, thus, rendering an increase in the 
height of the building possible [3,4]. The analysis considers 
coupled shear walls with any number of stiffening beams. 
The properties of the connecting beams and the cross-
sectional area of the piers are also assumed to be varying 
stepwise in the vertical direction [5]. 

The analysis is based on the Continuous Connection 
Method (CCM), in conjunction with Vlasov’s theory [1] of 
thin-walled beams, following an approach similar to the one 
used by Tso and Biswas [2] to solve the static problem of 
non-planar coupled shear walls. In the CCM, the discrete 
connecting beams are replaced by an equivalent continuous 
system of laminae. No study has been seen by the author 
concerning the static analysis of non-planar coupled shear 
walls with both stiffening beams and stepwise cross-
sectional changes in the literature. 
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The present formulation is implemented with a Fortran 
computer program. Using this computer program an 
asymmetrical example has been solved and compared with 
the solutions found by the SAP2000 [8] analysis program 
using the frame method [6,7] and a perfect match has been 
observed. 

II. Analysis 
To explain this procedure, the top, bottom and each 

height at which there is a stiffening beam and/or change of 
wall cross-section will be called "ends" and the part between 
any two consecutive ends will be called a "region". A non-
planar coupled shear wall and its plan for one region are 
given in Figures 1 with global axes OX, OY and OZ, the 
origin being at the mid-point of the clear span in the base 
plane.  

The axial force (Ti) in the piers is determined from the 
differential equation which is obtained by using the 
compatibility and the equilibrium equations. All relevant 
quantities of the problem are determined employing their 
expressions in terms of the axial force [4,5]. Then, 
employing the equilibrium equations, the corresponding 
displacements are obtained. 

 

Figure 1. Non-planar coupled shear wall and a representative cross-section. 
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The basic assumptions of the CCM for non-planar 
coupled shear walls can be summarized as: The geometric 
and material properties are constant throughout each region i 
along the height. The discrete set of connecting beams with 
bending stiffness EIci in region i are replaced by an 
equivalent continuous connecting medium of flexural 
rigidity EIci/hi per unit length in the vertical direction. The 
outline of a transverse section of the coupled shear wall at a 
floor level remains unchanged in plan (due to the rigid 
diaphragm assumption). The discrete shear forces in the 
connecting beams in region i are replaced by an equivalent 
continuous shear flow function qi, per unit length in the 
vertical direction along the mid-points of the connecting 
laminae. The torsional stiffness of the connecting beams is 
neglected. The walls and beams are assumed to be linearly 
elastic. Bernoulli-Navier hypothesis is assumed to be valid 
for the connecting beams. The St. Venant twisting moment 

term (GJii) is neglected in the torsional equilibrium 
equation. 

While obtaining the compatibility equations, all 
connecting laminae are cut through their mid-points, O , 

which are the points of zero moment. The vertical 
displacement due to bending can be obtained as the product 
of the slope at the section considered and the distance of 
point O  from the respective neutral axis. In addition, 

vertical displacement arises, also, due to the twisting of the 
piers, and is equal to the value of the twist at the section 

considered, times the sectorial area, , at point O . For the 

compatibility of displacements, the relative vertical 
displacements of the cut ends must be equal to zero. The 
terms of the compatibility equation are the contributions of 
the bending of the piers about the principal axes, the 
twisting of the piers, the axial deformation of the piers, the 
bending deformation in the laminae and the shearing 
deformation in the piers. Differentiating the compatibility 
equation with respect to z the following equation is obtained 
(i = 1,2,...,n): 

 i i i i i i iu a v b d      i
i i
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The internal moments, along with the couple produced 
by the axial force, Ti, balance the external bending moments 

iEXM  and 
iEYM . The equilibrium of the moments about the 

X and Y axes yields 
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In order to obtain the bimoment and the twisting moment 
equilibrium equations, the coupled shear wall will be cut 
through by a horizontal plane such that an upper part is 
isolated from the lower part of the structure. Equating the 

external bimoment, 
iEB , and the external twisting moment, 

iEtM , to the internal resisting bimoments, the bimoment and 

the twisting moment equilibrium equations for all regions of 
the structure can be written as follows: 
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Using the compatibility equation (1) and the equilibrium 

equations (2-5), the 4n unknowns of the problem, namely 

iu , iv ,
i , and 

iT , can be found under the applied loadings 

iEXM , 
iEYM , 

iEB , and 
iEtM . The elimination of iu , iv  and 

i  from (1-5) yields the following differential equation for 

iT : 
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Thus, the governing differential equation of the analysis of 

non-planar coupled shear walls is found as (6). This 

equation is written for each region separately. Solving the 

resulting differential equation, Ti is found as follows: 
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To determine the integration constants D1i to D4i, the 

boundary conditions at the top, bottom and between each 

pair of consecutive regions are employed. Then, the general 

solutions for the displacements ui, vi and i can be found 

using (2,3,5). 
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III. Numerical Results 
In this study, the non-planar coupled shear wall 

structures are analyzed using Macleod’s frame method [6], 
also, for comparison purposes. In Macleod’s method, the 
planar wall units are modelled as column members in wide 
column analogy. Macleod’s 3-D wide-column-frame 
analogy for core wall analysis has been improved over the 
time in the literature [7]. In this study, as a modification to 
Macleod’s method, additional rigid beam members are 
placed between the storey levels to improve the continuity 
of the connection between the wall units. This modification 
was observed to improve the results by various comparisons 
with the CCM.  

In order to verify the present method, several examples 
were solved both by the present method (CCM) and by the 
frame method using the SAP2000 structural analysis 
program [8]. As an example, the static analysis of a coupled 
shear wall with and without stiffening beams was carried out 
under the effect of the external loads given in Figure 2. The 
piers of the example coupled shear wall have stepwise cross-
sectional changes along the height, also. 

 

Figure 2.  Non-planar non-symmetrical structure. 

The total height of the non-symmetrical 24 storey 

structure is 66 m. The storey heights, the thicknesses of the 

piers and the connecting beams are shown in Figures 2-3. 

The height of the connecting beams is 0.4 m and the 

elasticity and shear moduli are E = 2.8510
6
 kN/m

2
 and G = 

1.0610
6
 kN/m

2
, respectively. The geometrical properties of 

the piers of the example structure are presented in TABLE I. 

Stiffening beam of 3.0 m height is placed at the level of the 

fourth storey and another one with 2.75 m height at the level 

of the sixteenth storey, as seen in Figure 2. 

The lateral displacements and the rotations at the 

midpoint of the connecting beams are compared for the 

unstiffened and stiffened cases, in Figure 4. Figure 5-7 

present the variation of axial forces and the total shear wall 

bending moments along the height. 

TABLE I. Geometrical Properties of the Piers 

Aji : Cross sectional area of the jth pier in region i 

A11 2.400 m
2
 A21 2.700 m

2
 

A12 4.500 m
2
 A22 4.050 m

2
 

A13 7.500 m
2
 A23 6.250 m

2
 

GXji , GYji : Coordinates of centroid of the jth pier 

in region i, referring to global axes, X and Y, 

respectively.  

GX11 

GY11 

-2.500 m 

2.000 m 

GX21 

GY21 

2.917 m 

1.722 m 

GX12 

GY12 

-2.200 m 

-0.033 m 

GX22 

GY22 

3.194 m 

0.482 m 

GX13 

GY13 

-3.693 m 

0.127 m 

GX23 

GY23 

4.566 m 

-0.024 m 

IXji , IYji : Moments of inertia of the jth pier in 

region i w.r.t. axes passing through the centroid 

parallel to global axes. 

IX11 

IY11 

6.409 m
4
 

1.009 m
4
 

IX21 

IY21 

7.004 m
4
 

2.464 m
4
 

IX12 

IY12 

29.513 m
4
 

5.136 m
4
 

IX22 

IY22 

20.827 m
4
 

3.349 m
4
 

IX13 

IY13 

45.470 m
4
 

35.349 m
4
 

IX23 

IY23 

32.899 m
4
 

27.979 m
4
 

IXYji : Product of inertia of the jth pier in region i 

w.r.t. axes passing through the centroid parallel 

to global axes. 

IXY11 0.000 m
4
 IXY21 -0.885 m

4
 

IXY12 -4.680 m
4
 IXY22 -3.339 m

4
 

IXY13 -10.541 m
4
 IXY23 -9.225 m

4
 

Jji : St. Venant torsional constant (moment of 

inertia) of the jth pier in region i. 

J11 0.072 m
4
 J21 0.081 m

4
 

J12 0.135 m
4
 J22 0.122 m

4
 

J13 0.175 m
4
 J23 0.151 m

4
 

SXji , SYji : Coordinates of shear center of the jth 

pier in region i, referring to global axes, X and Y, 

respectively. 

SX11 

SY11 

-3.748 m 

2.000 m 

SX21 

SY21 

5.005 m 

1.023 m 

SX12 

SY12 

-3.790 m 

-1.648 m 

SX22 

SY22 

4.684 m 

0.593 m 

SX13 

SY13 

-4.627 m 

-0.852 m 

SX23 

SY23 

6.182 m 

-4.664 m 

Iωji : Sectorial moment of inertia of the jth pier  

in region i. 

Iω11 2.800 m
6
 Iω21 2.890 m

6
 

Iω12 20.657 m
6
 Iω22 7.246 m

6
 

Iω13 152.169 m
6
 Iω23 164.834 m

6
 

ji : Sectorial area of the jth pier in region i  

at point O. 

11 4.504 m
2
 21 -2.670 m

2
 

12 -4.666 m
2
 22 -2.259 m

2
 

13 -2.393 m
2
 23 14.328 m

2
 

IV. Conclusion 
In this study, the static analysis of non-planar coupled 

shear walls with both any number of stiffening beams and 
stepwise cross-sectional changes is carried out. As an 
example, the non-planar non-symmetrical 24 storey coupled 
shear wall structure is considered. The results obtained are 
compared with those of frame method and a good agreement 
is observed for the stiffened and unstiffened cases. As seen 
in the figures, the stiffening of coupled shear walls causes a 
decrease in the maximum displacements at the top and the 
maximum bending moments at the bottom of a building. 
Thus, by using such stiffening beams the heights of 
buildings can be increased more. 

The method proposed in this study has two main 
advantages. First, the data preparation is much easier 
compared to the frame method. Second, modeling and 
computation time needed is much shorter compared to the 
other methods for non-planar coupled shear walls. Hence, 
the method presented is very useful for pre-design and 
dimensioning purposes while determining the geometry of 
non-planar coupled shear wall structures. Furthermore, 
through this study, the static behavior of the non-planar 
coupled shear walls is determined analytically. 
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Figure 3. Cross-sectional view of the regions of the example structure. 
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Figure 4. The lateral displacements and rotations at the midpoint of the connecting beams. 
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Figure 5. The total shear wall bending moment 
 about Y axis along the height. 
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Figure 6. The total shear wall bending moment 

 about X axis along the height. 

 

 

 

 

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

S
to

re
y 

h
ei

g
h

t 
(m

)

Axial force (kN)

Present study (unstiffened)

SAP2000 (unstiffened)

Present study (stiffened)

SAP2000 (stiffened)

 

Figure 7. The axial forces along the height. 
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