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Abstract— A simple algorithm is proposed to develop a 

nonlinear moment-curvature relation for Reinforced Concrete 

(RC) T-beam sections using nonlinear material models. The 

flange in the beam adds to the complexity of analysis compared 

to rectangular beam sections. This algorithm has been 

validated by laboratory testing of simply supported flanged 

beam specimens, subjected to two-point loading. The load-

deflection data obtained from the experiments is converted to a 

moment-curvature relation for the section applying simple 

bending theory. The results predicted numerically by the 

proposed algorithm are found to be in good agreement with the 

experimental data. The algorithm developed can be used to 

generate the load-deflection curve of an RC T-beam subject to 

any given loading. 

Keywords— reinforced concrete, T-beam, moment-

curvature , nonlinear analysis 

I. Introduction 
Flexural behavior of a reinforced concrete section can be 

studied with the knowledge of its moment-curvature 

relation. It is an important tool in generating moment field in 

a linear or nonlinear analysis as well as in predicting the 

complete nonlinear load-deflection behavior of RC flexural 

members. This relation is nonlinear mainly due to concrete 

cracking and steel yielding, which makes the analysis fairly 

complicated. Therefore for simplicity, it is sometimes 

idealized as bilinear or trilinear [1]. However to predict the 

response more accurately, it becomes necessary to 

incorporate nonlinear effects accounting for flexural 

cracking that capture the progressive flexural degradation 

under incremental loading. 

Various models are available in the literature for predicting 

the moment-curvature relation of RC sections. Some of 

these models are simple but predicts the behavior up to 

service loads only. To predict the curvatures and deflections 

beyond service loads, Baẑant and Oh [2], Carreira and Chu 

[3-4], and Prakhya and Morley [5] proposed nonlinear 

stress-strain models. In the present study, how a moment-

curvature relation can be developed for reinforced concrete 

T-beam sections is shown. Such sections are commonly 

encountered in continuous slab systems supported on beams 

as well as in bridge deck systems. 
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A portion of continuous slab integrally connected to the 

beam serves as flange and the supporting beam as web. The 

flexural capacity of such sections can be enhanced when the 

flanges are in compression. The web helps in resisting shear 

stresses.  

The moment-curvature relation is obtained by carrying out 

sectional analysis of RC T-beam section. In this analysis, 

different cases are considered depending on the position of 

the neutral axis [6]. Testing of three T-beams has been 

carried out in the laboratory. These beams are loaded 

symmetrically at two points to simulate pure flexure. Load-

deflection data obtained from these tests is used to generate 

moment-curvature relation using theory of simple bending. 

The results generated by numerical algorithm are validated 

with these experimental results. The behavior of the beams 

is studied for variation in depth of flange and tensile 

reinforcement. The nonlinear sectional analysis for these RC 

T-beams is explained in the next section. 

II.  Sectional analysis of RC T-beam 
Nonlinear sectional analysis of RC T-beam incorporates 

material models to account for the material nonlinearities 

due to cracking of concrete, yielding of steel and strain 

softening. Euler-Bernoulli hypothesis (plane sections normal 

to the beam axis before bending remain plane and normal 

after bending) is assumed to hold good throughout the 

analysis. Also the overall bond slip is assumed to be zero. 

A. Material Models 
Stress-strain behavior for concrete in uniaxial compression 

which takes into account compression strain-softening [7] as 

shown in Fig. 1 (a) is implemented in proposed algorithm. 

0

0 0

2

1 2

c c
c

c c c c

c c c

E

E

f


 

      
              

 (1) 

where Ec is the short term elastic modulus of concrete in 

N/mm
2
, fc is the peak stress in compression in N/mm

2
and εc0 

is the strain at peak compressive stress and assigned as 

0

2 c
c

c

f

E
    (2) 

The expression for εc0 is the smallest value which gives a 

realistic stress-strain curve [8]. The value of εc0 has an 

approximate value of 0.002. For concrete in tension an 

idealized bilinear stress-strain curve is used as shown in Fig. 

1(b) and tensile stress (ft) is formulated as below. 

For t tp   ; t c tf E    (3) 
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Figure 1(a) Stress-strain curve for concrete in 

compression (b) tension 
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Figure 2 Stress-strain curve for steel with strain-

hardening 
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Figure 3 Cross-section of T-beam showing variation of strains and stresses for neutral axis inside the flange 

For tp t tf   ;  '
t t t t tpf f E     (4) 

For t tf   ; 0tf    (5) 

where ft and εt is uniaxial stress and strain of concrete in 

tension respectively, εtp is the strain at peak tensile stress, εtf 

is the final tensile strain when the tensile stress reduces to 

zero, f
’
t is the direct tensile strength in N/mm

2
 and Et is 

tangent strain-softening modulus and is given by[2] 

 

'

70

57
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
   (6) 

where Ec, f
’
t and Et are in psi (1 psi =6895 N/m

2
) 

 

Direct tensile strength f
’
t is taken as [9] 

' 0.34t cf f    (7) 

The expressions for the strain at peak stress (εtp) and for the 

final strain (εtf) when stress reduces to zero can be simply 

derived from the Fig. 1 (b) as 
'

t
tp

c

f

E
     (8) 

' '
t t

tf

c t

f f

E E
      (9) 

For steel, an idealized bilinear stress-strain curve with strain 

hardening region, has been proposed by Belarbi and Hsu 

[10]. This model is adopted for present study as shown in 

Fig. 2 and stress in steel (fs) is expressed as 

For s y  ; s s sf E    (10) 

For s y  ; 0s h sf f E    (11) 

 

where fs is the stress in steel at the strain of εs and, εy is the 

yield strain, Es is the elastic modulus of steel in N/mm
2
 and 

Eh is the modulus of steel in the strain-hardening region. 

B. Generation of moment-curvature 

relationship 
A more realistic approach that account for the material 

nonlinearities due to concrete and steel is adopted in the 

present study. The analysis considers two cases, neutral axis 

inside the flange region, and neutral axis outside flange. 

Nonlinear stress-strain curve for concrete in compression 

mentioned above has been adopted in the algorithm. Strain-

hardening in steel provides nonlinear behavior due to 

yielding of steel. All nonlinearities together make the 

analysis more accurate and in turn provides a perfect input 

for the nonlinear analysis of the structure. 

Variation of strains and stresses for a typical RC T-beam 

section is shown in Fig. 3. Area of reinforcement in tension 

and compression are Ast and Asc respectively. Strains in the 

reinforcement in tension and compression are εst and εsc and 

the corresponding stresses are fst and fsc. 

The force resultants for the reinforcement in tension (St) and 

in compression (Sc) are given by equation 

t st stS f A    (12) 

c sc scS f A    (13) 

With the known value of strain at the extreme compression 

fiber εcm and the depth of neutral axis kd (d is effective depth 

of the beam), strains at the level of reinforcement (neutral 

axial above cover) can be calculated using similar triangles 

as follows 

st cm

d kd

kd


      (14) 

'

sc cm

kd d

kd


     (15) 

A. Neutral axis inside the flange  fkd D  

When the neutral axis lies inside the flange, a small portion 
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Figure 4 Cross-section of T-beam showing variation of strains and stresses for neutral axis outside the flange 

of the flange and the web carries tension along with the 

reinforcement. Further we need to consider various cases 

depending upon the lines of tensile stress peaks and of the 

points where the tensile stress reduces to zero, relative to the 

bottom of the flange as shown in Fig. 3. 

Various cases depending on the values of εtp and εtf are 

considered for the analysis. These are listed below. 

 

a) tm tp    

b) tp tm tf    

i) 
fD tp    

ii) 
fD tp    

c) tm tf   

i) 
fD tf    

ii) 
ftp D tf      

iii) 
fD tf    

where εtm is strain at level of extreme tension fiber of 

concrete section 

The strain at the level of bottom of flange (εDf
) is given by 

f

f

D cm

D kd

kd


     (16) 

Equation (17) shows resultant compressive stress (Cc) in 

concrete which acts at a distance of k2kd from extreme 

compression fiber. 

1c c fC k f b kd    (17) 

where k1 defines the average compressive stress, bf is the 

width of flange. 

Constants k1 and k2 are known as stress block parameters. 

These stress block parameters can be simply derived from 

the stress-strain curve by converting it to an equivalent 

rectangular stress block [2] as 
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Fig. 3 (a), (b), (c) and (d) shows the stress variations 

for
fkd D . Stress block parameters k3w, k3f, k4w, and k4f, 

can be derived by converting the stress-strain curve of 

concrete in tension into an equivalent rectangular stress 

block. Equations 20-23 shows these stress block parameters.  

For tm tp    
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The resultant stress for web component which acts at a 

distance of k4w (D-kd) from extreme tension fiber is given by 

 3tw w t wC k f b D kd    (24) 

where k3w is the average tensile stress for web portion and bw 

is width of the web 

The resultant stress for the flange component which acts at a 

distance of k4f (D-kd) from extreme tension fiber is given by 

  3tf f t f wC k f b b D kd     (25) 

Calculation of kd and moment (M) is as given by equation 

26 and 27. 

 
 

3 3

1 3 3

w t w f t f w st st sc sc

c f w t w f t f w

k f w D k f w w D f A f A
kd

k f w k f w k f w w

   

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 (26) 
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Figure 5 Algorithm showing step by step procedure 

to generate moment-curvature relation 
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B. Neutral axis outside the flange  fkd D  

When the neutral axis lies outside the flange, a part of web 

and whole flange will be in compression. Fig. 4 shows the 

variation of stresses when the neutral axis lies outside the 

flange The cases considered are as shown in Fig. 4 (a), (b), 

and (c) and listed below 

 

a) tm tp    

b) tp tm tf    

c) tm tf   

Strain at the level of bottom of flange is given by 

f

f

D cm

kd D

kd


     (28) 

The resultant compressive stress is divided into a web 

component and a flange component. The resultant stress for 

web component which acts at a distance of k2wkd from 

extreme compression fiber is given by 

1cw w c fC k f b kd   (29) 

where k1w is the average compressive stress for web portion 

and bf is width of the flange 

The resultant stress for the flange component which acts at a 

distance of k2f kd from extreme tension fiber is given by 

 1cf f c f w fC k f b b D    (32) 

 

Stress block parameters, resultant tensile stresses, and 

conditions of force and moment equilibrium for strain at the 

level of peak tensile stress (εtp) is greater than or equal to 

strain in at the level of extreme tension fiber (εtm) can be 

given by equations 33-43 
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Figure 7 Deflection profile and bending moment diagram for the beam 

An algorithm has been written in MATLAB to generate the 

moment-curvature relation for a reinforced concrete T-beam 

section as shown in Fig. 5 considering all the cases 

mentioned above. Finally, curvature is calculated as 

cm

kd


   (44) 

III. Experimental data 

A. Details of the test specimens 
Experiments conducted at Structural Engineering 

Laboratory, IIT Madras on three simply supported RC T-

beams subjected to symmetric two point loading simulating 

pure bending. Fig. 6 shows the photograph of one of the test 

specimens. The beams were tested under two point loads. 

Effective span (l) of the beam is 2750 mm. The load was 

applied at a distance of l/4 from both the ends, with the help 

of hydraulic jack. Deflections were recorded using LVDT 

(Linear variable displacement transducer) positioned at the 

midspan as well as the two loads points. The geometrical 

and material properties of the test specimens are tabulated in 

Table I and Table II. The yield strength of steel is 

500N/mm
2
. The beams were casted using ready mixed 

concrete and cured for 28 days. 

TABLE I.  GEOMETRIC PROPERTIES OF TEST SPECIMENS 

Beam. bf (mm) D (mm) Df (mm) bw (mm) 

1S5R12 770 174 50 230 

1S7R10 770 194 70 230 

1S7R12 770 194 70 230 

TABLE II.  MATERIAL PROPERTIES OF TEST SPECIMENS 

Beam. fc (MPa) Ast (mm2) Asc (mm2) 

1S5R12 25 3Y12 1Y10 

1S7R10 25 2Y10 1Y10 

1S7R12 25 3Y12 1Y10 

 

 

Figure. 6 Photograph of the experimental setup 

Tensile reinforcement and depth of flange are the two 

parameters considered in this experimental study. Specimen 

1S7R10 has lower reinforcement compared to the other two 

specimens (1S5R12 and 1S7R12) to study the effect of 

tensile reinforcement on moment capacity of the beam 

section. Keeping the tensile reinforcement constant,   

specimens 1S5R12 and 1S7R12 are studied to understand 

the influence of depth of flange.  

B. Generation of moment-curvature 

relation from experimental load-

deflection data 
The deflection profile between the loading points takes 

shape of an arc of a circle with radius R and a constant drift 

from central line as shown in Fig. 7 in a pure bending 

region. Using theory of simple bending, the curvature can be 

calculated from the deflection data obtained from the 

experiments as explained below. 

Curvature of the beam section given by 

1

R
    (45) 

 

From Fig. 7, 

' ' 'OC OD OE R    (46) 

where R is radius of the circle. 

Using Pythagoras theorem, 
2 2 2' ' 'OC CD OD    (47) 

 ' ' mid LOC OM C M R R y         (48) 

Substituting this value in (47) and solving, 
22 2 22
4

lR Ry y R      (49) 

22

4
2

ly
R

y


    (50) 

From (45), we get 

22

1 2

4

y

lR y
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
  (51) 

mid Ly      (52) 

Substituting (52) in (51), curvature for a given cross-section 

of a beam from the experimental load-deflection data can be 

calculated. 

Moment at mid-span of the simply supported beam 

(determinate structure) can be calculated as 

8

PL
M     (53) 
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IV. Validation of the algorithm 

with the experimental data 
Moment-curvature curves obtained from the numerical 

algorithm are compared with that generated from the 

experiment. The comparison between the numerical and the 

experimental results are presented in Fig. 8 to Fig. 12 

It can be inferred from the comparisons shown in the Fig. 8 

to 12 that, the results generated using the proposed 

numerical algorithm are in good agreement with that 

obtained from the experiments. Fig. 11 shows that increase 

in the depth of flange increases the moment capacity of the 

section as expected. Similarly, moment capacity is higher 

for the higher percentage of steel as seen in Fig.12. 
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Figure 8 Comparison of numerical and experimental 

moment-curvature curve for 1S5R12 
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Figure 9 Comparison of numerical and experimental 

moment-curvature curve for 1S7R10 
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Figure 11 Comparision of moment-curvature graphs for 

variation in depth of flange 
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Figure 12 Comparision of moment-curvature graphs for 

variation in tensile reinforcement 

Conclusions 

The numerical algorithm developed is simple and efficient, 

and predicts the moment-curvature relation quite accurately. 

It can also be conveniently invoked as an input in the 

numerical analysis, to predict the nonlinear load-deflection 

behaviour as well as in studies related to probabilistic 

analysis and optimization, where the nonlinear analysis has 

to be repeatedly executed. 

 

The results show that the variables considered in the study 

i.e. depth of flange and tensile reinforcement contributes 

significantly to the moment capacity of the section. 
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