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Abstract— With an increase in power transfer, transient stability 
is increasingly becoming important for secure operation. With the 
advent of FACTS devices, the problem of transient stability is being 
addressed and efforts are under way to utilize the systems to their full 
capacity. The focus of this work is a neural network predictive 
controller for a versatile FACTs device, Unified Power Flow 
Controller, which can be utilized to improve the transient stability 
performance of the system. A single machine infinite bus system 
subjected to a 3-phase short circuit fault is used to demonstrate the 
superior damping performance of the proposed controller in 
comparison to the conventional PI controller. 
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I.  Introduction  
In today’s deregulated electric service environment, widely 

interconnected power supply systems extending from the 
connections inside utilities’ own territories to inter-utility, 
inter-regional and international connections have become the 
order of the day. This is resulting into a power system that is 
increasingly becoming complex to operate and at the same 
time is also becoming less secure. Such a stressed system is 
continuously under threat of losing stability following a 
disturbance. To overcome this problem, the power system 
planners, engineers and operators have been continuously 
under-utilizing the existing network by providing greater 
operating margins and redundancies.  In recent times, the 
availability of high power semiconductor devices for power 
system applications have led to technologies such as Flexible 
AC Transmission Systems (FACTS) for secure loading, power 
flow control and damping of power system oscillations. Of all 
the FACTS devices, the unified power flow controller (UPFC) 
is the most versatile and capable of providing stability to the 
system subjected to transient disturbances due to its ability to 
control, simultaneously or selectively, all the parameters 
affecting power flow in the transmission line i.e. voltage, 
impedance and phase angle [1]. 

A number of control strategies have been reported for 
using the UPFC effectively. The most commonly employed 
controllers for the UPFC have been of the PID (Proportional 
+Integral+ Derivative) type because of their simplicity and 
ease in design. However, these controllers suffer from a 
serious drawback in the form of deterioration in the 
performance when the system is made to operate under widely 
ranging operating conditions and subjected to transients. 
Neural networks have an inherent capability to learn and store 
information regarding the non-linearities of the system and 
provide this information whenever required. This renders the 
neural networks suitable for system identification and control 
applications [2-7]. 

 This paper presents a neural network predictive controller 
for the series branch of the UPFC for improving the transient 
stability performance of a single machine infinite bus system 
(SMIB). The proposed controller uses a neural network to 
identify the system and employs predictive control for the 
system subjected to transients. 

II. UPFC: Principal Operation and 
Control  

A simplified scheme of a UPFC is shown in Fig. 1. UPFC 
consists of a parallel and series branches, each one containing 
a transformer, power-electric converter with turn-off capable 
semiconductor devices and dc circuit.  

Converter 2 is connected in series with the transmission 
line by series transformer. The real and reactive power flows 
in the transmission line can be quickly regulated by changing 
the magnitude and phase angle of the injected voltage 
produced by converter 2. The basic function of converter 1 is 
to supply the real power demanded by converter 2 through the 
common dc link. Converter 1 can also generate or absorb 
controllable reactive power. 
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Figure 1.  Circuit arrangement of the UPFC. 

III. Neural network predictive 
control: An overview  

Generalized Predictive Control (GPC) was originally 
developed with linear plant predictor models [8]. For non 
linear plants, a reasonable model of the plant is required as the 
quality of the model affects the accuracy of the prediction. 
Neural networks have been proved to possess an inherent 
capability to capture the non linear dynamics of a plant. 
Therefore, the use of a neural network to model non-linear 
plants instead of using the standard modelling techniques will 
surely enhance the prediction capability of the GPC. A neural 
network predictive control (NNPC) system is shown in Fig. 2. 
An input signal r (n) is converted into yr(n) which is fed to the 
Cost Function Minimization (CFM) block. Tentative control 
inputs for specified number of future time instants are first fed 
to the neural identifier by setting the switch S at position 2 to 
enable the CFM to use the response from the neural identifier 
to calculate the next control input. The best control input 
calculated by the CFM is then fed to the plant by setting the 
switch at position 1. 

IV. Test system  
The system considered to investigate the transient 

performance of a single machine infinite bus system is as 
shown in Fig. 3. 

 

 

Figure 2.  Block diagram of the NNPC system. 

 

Figure 3.  Block diagram of the test system. 

 

 The generator is of 1000-MVA, generating at 15.7KV. 
The transmission system comprises of 400-kV double lines 
500 km long divided into two sections, 200 km and 300 km 
long. The UPFC is connected at the infinite bus. Therefore the 
voltage magnitude control by the shunt converter is not 
considered limiting its function to supply/absorption of real 
power at its dc terminals as demanded by the series converter. 
This system has been simulated using Matlab \Simulink. 

V. Neural network predictive 
control: Design and Algorithm 

The proposed neural network predictive controller employs 
a neural network for identifying the non linear test system 
under consideration. The neural identifier in Fig. 4 that 
identifies the test system (including the UPFC) under 
consideration uses the current value and the value at three 
previous instants of the quadrature component of the series 
injected voltage Vq  and the active output power P at four 
previous instants as inputs to predict the current value of the 
active output power. Hence, it is a two-layer feedforward 
neural network with 8 inputs, a single hidden layer with 15 
sigmoidal neurons and one linear output neuron. The data 
required for training the network is generated from simulation 
of the operation of the test system under consideration by 
applying randomly generated values for Vq  to the plant at 
regular intervals of 0.03125 second. The Backpropagation 
algorithm employing the Levenberg-Marquardt algorithm for 
faster convergence is used to train the neural network shown 
in Fig. 4 to identify the plant.  

The proposed neural network predictive controller is based 
on the receding horizon technique. As the rotor angle 
oscillations are to be damped by controlling the active power P 
effectively to the steady state level, the controller minimizes 
the difference between the actual value of the active power 
and its steady state value over some specified future time 
horizon. It also minimizes the deviation in the control action 
making it smooth and ensuring its steady state behavior. The 
actual value of the active power at future time instants 
corresponding to the tentative control inputs are predicted by 
the neural identifier. The cost function used in this work 
employs the Integral Square Error (ISE) criterion. It consists 
of squared deviations between the reference and predicted 
active power values and the weighted square of the change in 
control input over successive future time instants given as: 
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Figure 4.  Structure of the neural network identifier. 
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where mP is given by the neural identifier, '
qV  is the 

tentative control input and the active power reference orefP  is 
obtained from the steady-state power flow requirements by 
simulating the test system in MATLAB / SIMULINK. The 
cost function stated above (1) is minimized using the damped 
Gauss-Newton method [9], an optimization technique meant 
for the non linear squares problems.  

 

VI. Simulation Results and 
Discussion  

The system under consideration is simulated under 
different operating conditions to investigate its transient 
stability performance and to demonstrate the effectiveness of 
the proposed controller. The contingency under consideration 
is a three phase fault at the sending end of one of the 
transmission lines when the generator is operating at different 
power levels. The fault is considered to occur between t=0.2s 
and t=0.4s.The fault is cleared with the operation of 
transmission line reclosure. The following case studies were 
undertaken to make the assessments: 

1) Case 1:   The SMIB system under consideration was 
simulated without UPFC at 40% and 55% of the rated 
capacity and was subjected to the said transient. The transient 
stability performance of the system is satisfactory at these 
power levels as shown in Fig. 5 and 6  even without the UPFC 
in the system. 

 
Figure 5.  Electrical power output oscillations at different power levels. 

 
Figure 6.  Load angle oscillations at different power levels. 

 
2) Case 2: The system under investigation is operated at 

65% of the rated capacity without UPFC. The response of the 
system without the UPFC is as shown in Fig.7 and 8. The 
system is found to be unstable with undamped electrical power 
and rotor angle oscillations. Additional control is required to 
stabilize the system. 

3) Case 3: The system under investigation is again 
operated at 65% of the rated capacity but with a UPFC 
employed for improving transient stability performance of the 
system. Fig. 9 and 10 show the electrical power output and 
rotor angle oscillations for this case. These figures provide a 
comparison between the performance of the conventional PI 
controller and the proposed controller. The PI controller is 
tuned manually to reduce the overshoot during transient at 
this operating point. The value of the quadrature component of 
the series injected voltage for both the controllers is shown in 
Fig.11. The proposed controller requires smaller voltage 
values (< 0.45 pu) for Vq  as compared to the PI controller, 
which injects Vq equal to 0.6 pu  for stabilizing the system. 

4) Case 4: The UPFC equipped system under considera-
tion is simulated at 70% of the rated capacity and subjected to 
the same transient. The electrical power output and rotor 
angle oscillations are shown in Fig. 12 and 13. The PI 
controller tuned for case 3 fails to stabilize the same system, 
when operated at a slightly higher power level. However, the 
proposed neural network predictive controller continues to 
perform satisfactorily. The quadrature component of the series 
injected voltage is shown in Fig 14. The value of Vq  injected 
by the proposed controller to stabilize the system is still less 
than 0.45 pu.  
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Figure 7.  Electrical power output oscillations at Peo = 0.65 pu. 

 
Figure 8.  Load angle oscillations at Peo = 0.65 pu. 

 

 
Figure 9.  Electrical power output oscillations at Peo = 0.65 pu for different 

control schemes. 

 

 
Figure 10.  Load angle oscillations at Peo = 0.65 pu for different control 

schemes. 

 
Figure 11.  DC capacitor voltage characteristics at Peo = 0.65 pu for different 

control schemes. 

 
Figure 12.  Electrical power output oscillations at Peo = 0.70 pu for different 

control schemes. 

 

 
Figure 13.  Load angle oscillations at Peo = 0.70 pu for different control 

schemes. 

 

 
Figure 14.  DC capacitor voltage characteristics at Peo = 0.70 pu 
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VII. Conclusion 
The system under consideration exhibited improved 

transient stability performance at higher power levels after 
being equipped with the UPFC. The performance of the 
proposed controller is investigated in the system under 
consideration. This controller damps the electrical power 
output and rotor angle oscillations in the system very 
effectively. It performs satisfactorily even at those operating 
points where the PI controller fails to stabilize the system. The 
proposed neural network predictive controller hence, provides 
a significant improvement in the transient stability 
performance of the system under consideration over a wide 
range of operating conditions. 

 

APPENDIX 
UPFC ratings:   Series converter = 160 MVA  

      Shunt converter = 160 MVA 

      Vdcbase = 126kV   Cdc = 120.94μF 

Neural network predictive controller data:   

N1=1   N2=5  Nu=5  Control weighting factor, ρ = 0.3 
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