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Abstract—In modern engineering practice computer 

simulations are often used as a substitute for laboratory 

experiments. This setup yields a simulation-driven optimization 

problem in which the computer simulation acts as the objective 

function. Since simulation runs are typically computationally 

expensive, metamodels are used to approximate the simulation. 

However, this setup can face difficulties in high-dimensional 

problems as the accuracy of metamodels then becomes very poor. 

To address this issue this paper proposes an optimization 

framework which incorporates a dimensionality-reduction 

technique into the search. This allows to formulate a valid lower 

dimensional problem which is easier to solve. The solution found 

is then mapped back to the original high dimensional space. 

Performance analysis with an airfoil shape optimization problem 

shows the effectiveness of the proposed framework. (Abstract) 

Keywords—engineering design optimization, computer 

simulations, metamodels, high-dimensionality (key words) 

I.  Introduction 
In modern engineering computer simulations are often 

used as a substitute for laboratory experiments when 
evaluating candidate designs. This setup enhances the design 
process in several aspects, for example by reducing its 
duration or cost. Such simulations, which need to be validated 
with laboratory experiments, act as the problem's objective 
function since they assign a merit value to each candidate 
design. This in turn formulates an optimization problem where 
candidate designs are represented as vectors of design 
variables, and the goal is then to find the variables values 
which yield the best performing design [1,18,20]. It follows 
that under these settings a candidate design and a vector of 
design variables are equivalent, and are used interchangeably 
in this paper. While computer simulations have numerous 
merits, they also introduce several challenges into the design 
process: i) each simulation run is  computationally-expensive, 
namely, it requires large computational resources and hence 
only a small number of simulation runs can be made, ii) there 
is no analytic expression which defines how candidate designs 
are mapped to their merit value, and this effectively renders 
the simulation as a black-box function, and iii) the latter black-
box function can have a complicated landscape with multiple 
local optima, an aspect which further exacerbates the 
optimization difficulty. 

In such problem variants classical optimization approaches 
will often struggle and this has motivated the development of 
new techniques tailored for such simulation-driven problems 
[1,2,18]. One such established framework is that of using 

metamodels, also termed in the literature as surrogates or 
response surfaces, which are used as a computationally 
cheaper approximation of the true expensive function (namely, 
the simulation). This way, approximate objective values can 
be obtained with far fewer computer resources and therefore 
more designs can be evaluated.  

While the metamodel-assisted framework has proven to be 
effective, real-world optimization problems are often 
characterized by a large number of design variables, namely, 
they are high-dimensional. In such settings the prediction 
accuracy of the metamodels becomes poor, which in turn 
degrades the effectiveness of the optimization process [1,9]. 

To address this issue this paper proposes an optimization 
framework which incorporates a dimensionality-reduction 
technique into the search, such that during the optimization 
process the framework formulates a valid lower-dimensional 
problem. The latter involves fewer design variables and 
therefore the prediction accuracy of the metamodels improves. 
The solution obtained from these simplified problems is then 
mapped back into the original high-dimensional space to 
obtain a new optimal design. The effectiveness of the 
proposed approach is demonstrated by numerical experiments 
with an engineering problem of airfoil shape optimization.  
The remainder of this paper is organized as follows: Section 2 
provides the general background and literature survey, Section 
3 describes the proposed framework, and Section 4 presents 
the numerical experiments and their analysis. Lastly, section 5 
concludes this paper. 

 

II. Background 
As mentioned in Section 1, simulation-driven optimization 

problems are characterized by function evaluations which 
require large computational resources. This in turn severely 
restricts the number of candidate designs which can be 
evaluated and hampers the effectiveness of the optimization 
process. An established approach to circumvent this limitation 
is by using metamodels, also termed in the literature as 
surrogate models or response surfaces [1,18,20]. These are 
approximations of the true expensive simulation, but which 
are computationally cheaper to evaluate. During the 
optimization process estimated objective values are obtained 
from the metamodel at a significantly lower computational 
cost, which allows to evaluate a larger number of candidate 
designs. Metamodels are typically interpolants and are trained 
based on previously evaluated vectors. Some common variants 
include quadratic or higher order polynomials, radial basis 
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functions (RBF), Kriging, and artificial neural networks 
(ANN) [1,18,20]. 

After training a metamodel an optimizer is invoked to 
locate a good solution based on the metamodel predictions. 
Since an effective search needs to be both global and local, a 
common approach is to use both a global optimizer which 
explores the metamodel landscape globally, combined with a 
local optimizer which can refine solutions and yield more 
accurate results. Common choices for the global optimizers 
include evolutionary algorithms (EA), particle swarm 
optimizers (PSO), and simmulated annealing (SA), while the 
some local optimizer include the Nelder-Mean simplex, 
sequential quadratic programming (SQP), and the hill 
climbing algorithm [1,2,18,20]. 

While such metamodel-assisted framework perform well in 
problems with a small number of variables, they can struggle 
when the number of variables increases (over ten) since then 
the prediction accuracy of the metamodel becomes poor. To 
illustrate this, a Kriging metamodel [14,20] was trained to 
approximate the Rastrigin function in dimensions 2, 20, 50, 
and 100. Afterwards a random sample of 500 vectors was 
generated and the metamodel was evaluated at these vectors. 
The obtained responses were sorted to produce histograms, 
which are shown in Figure 1.  

Figure 1: Historgrams of the responses of Kriging 
metamodels in dimensions 2, 20, 50, and 100. 

 

It follows that as the function dimension increased the 
metamodel lost its ability to capture the actual function 
features and was basically reduced to a flat plane at the mean 
level of the sample response. A similar effect was observed 
with other common metamodels such as RBF and the Shepard 
interpolant, which also use an interpolation mechanism based 

on the distance  from the sample vectors. Overall, it follows 
that in high-dimensional problems the metamodel 
approximation became poor which in turn would hamper any 
optimization process. To combat this issue the following 
section describes an optimization algorithm which 
incorporates dimensionality-reduction into the search. 

III.  Proposed framework 

A. Dimensionality-reduction  
The goal of the dimensionality-reduction (DR) stage is to 

formulate an optimization problem which is simpler to solve, 
but whose solution can be mapped back to a good solution of 
the original high-dimensional problem. The DR approach 
implemented in this study was that of variable selection (VS), 
also known in the literature as subset/feature selection [12,13]. 
The goal of VS is to identify a subset of the original problem 
variables which are the most important. The approach differs 
from other DR methods such as principal component analysis 
(PCA) since the reduced subset consists of some of the 
original problem variables while in methods such PCA the 
variables in the reduced subset are linear combinations of the 
original variables, and may not be easily associated with the 
problem formulation. VS has been successfully used in diverse 
domains such as chemistry, ergonomics and machine learning 
[9,10,12,13,16,17]. 

In this study VS is implemented by means of cross-
validation, namely, the set of sampled vectors is split into a 
training set and a testing set. Assuming the original problem 

dimension is  and the reduced dimension is  ̄, then the lower 

dimensional vector is obtained by discarding    ̄elements in 
each vector. Since there are different variable combination it is 
necessary to explore several subsets. The projected vectors are 
split into a training set and a testing set. A metamodel is 
trained by using the former and is then tested on the latter. The 
prediction accuracy of the resultant metamodel is gauged by 
the mean squared error  

     
 

 
∑| (  )   (  )|

  

where n is the number of vectors in the testing sample, 
 ( ) is the response of the metamodel and  ( )is the true 
function value, where   is a vector from the testing set. The 
process is repeated for different subsets, namely, different sets 
of variables, and the subset which yields the minimal MSE is 
chosen is the active set. 

 

B. Framework workflow 
The proposed framework follows the global-local layout 

outlined in Section 2, but incorporates dimensionality-
reduction by introducing two new elements: 

a) A working dimension  ̄   , which is the dimension 
prescribed by the user for the lower-dimensional problem, and 

b) A subset vector     which indicates which variables 
of the original problem which has dimension  are active, 
namely, have been selected, to participate in the lower 
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dimensional problem. Specifically,      indicates that the ith 
variable is active, while     indicates that it is not. 

The framework begins by generating an initial sample of 
vectors by using a Latin hypercube design [15,19], to obtain a 
space-filling sample as this improves the prediction accuracy 
of the metamodel. The sampled vectors are then evaluated 
with the true expensive function and the vectors are cached. 

Next the main optimization loop begins where the sampled 

vectors are projected to the working dimension  ̄ , and this 
yields a lower dimensional sample. A metamodel is then 
trained based on the latter sample, and in this study the well-
established Kriging metamodel was used [14]. Metamodel 
predictions are inherently inaccurate and this can hamper the 
optimization search and lead to convergence to a poor 
solution. To address this the proposed framework implements 
a trust-region (TR) approach [2,7], namely, it searches for an 
optimum of the metamodel in a confined region (the trust-
region) which is centred at the current best solution. An 
optimum is search for by using an evolutionary algorithms 
(EA) which explores the metamodel landscape [3], and is then 
followed by a gradient-based SQP solver to refine the obtained 
solution. The low-dimensional solution found is then mapped 
to the original high-dimensional solution where the variables 
which were inactive are assigned the corresponding values 
from the best solution found so far, namely 

  
  ,

  
             

                
 

where   is the solution mapped back to the high 
dimension,   is the obtained low-dimensional solution, and 
  is current best high-dimensional solution found. Based on 
the obtained value of the evaluated solution the trust-region is 
updated as follows (assuming a minimization problem): 

 if  (  )   (  ): The optimization step succeeded 
as the new solution found is better than best found so 
far. Since the metamodel appears to be accurate the 
TR radius is doubled and is centred around the new 
best solution. 

 if  (  )   (  )and the number of vectors in the 
trust-region is deemed as too small: the optimization 
step failed, but this may be due to the metamodel 
being inaccurate because of too few sample vectors in 
the TR. Therefore another vector is sampled in the 
TR to improve the prediction accuracy. 

 if  (  )   (  )and the number of vectors in the TR 
is deemed as sufficient: the optimization step failed, 
but because there the are sufficient vectors in the trust 
region the failure is attributed to the TR being too 
large. Therefore, the trust-region radius is halved. 

After these steps the entire process repeats, until the prescribed 
limit of simulation runs is reached. To conclude the 
framework description Algorithm 1 gives its workflow. It is 
emphasized that while in this study the proposed framework 
used a Kriging metamodel, any other metamodel variant can 
be readily used.  

 

generate an initial sample of vectors and evaluate them with 
the true objective function; 

define a trust region around the best vector; 

repeat 

 select the variables for the lower dimensional space; 

 project the sampled vectors to the lower dimension; 

 train a metamodel with the projected sample; 

 perform a trust-region optimization; 

 project the obtained solution to the high-dimension; 

 update the trust-region and sample; 

until the limit of simulation runs is reached; 

Algorithm 1: The workflow of the proposed framework 

 

IV. Performance analysis 
 

To evaluate its effectiveness, the proposed framework was 
applied to an engineering problem of airfoil shape 
optimization. The goal was to simultaneously optimize the 
shape of five airfoils at different locations along an aircraft 
wing. Each airfoil was subject to a different geometric twist 
(rotation) thereby increasing its effective angle of attack 
(AOA), which is the angle between the airfoil chord and the 
velocity vector. The twist angles per airfoil were 
                  , respectively. The goal was to maximize 
the lift  coefficient (  ) while minimzing the aerodynamic drag 
coefficient (  ). Airfoils were represented with the Hicks-
Henne parametrization [4] which uses a baseline airofil shape 
   (taken here to be the NACA0012 symmetric airfoil) and 
adds shape functions 

  ( )  *   (  
      

   ( (   )⁄ ))+          

such that the resultant airfoil shape is given by 

     ∑    ( ) 

where    [    ]are coefficients to determine, namely, the 
design variables and  is the prescribed number of basis 
functions. In this study     was used for each upper/lower 
airfoil curve was 25 which resulted in 50 functions per airfoil 
and a total of 250 variables (50 × 5 airfoils). The flight 
conditions were set to a cruise altitude of 30,000 feet, a cruise 
speed of 70% of the speed of sound and an angle-of-attack 
(AOA) of   . 

The objective function used was the mean performance over 
the five airfoils 
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where   is a penalty for violating the thickness constraint and 
was defined as 

  |
  

  
|
  

 
  if t<t* 

      otherwise 

where   is the airfoil thickness between 0.2 to 0.8 of the chord 
line and        is the minimum allowed thickness. Airfoils 
were evaluated with Xfoil aerodynamic analysis code for 
subsonic airfoils [5]. Figure 2 gives the layout of the airfoil 
problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Formulation of the airfoil problem and the Hicks-
Henne parametrization for a single airfoil. 

For benchmarking purposes the proposed framework was 
compared to the EA-PS algorithm [6] which combines an 
evolutionary algorithm with a Kriging metamodel, and uses 
periodic sampling to update the metamodel and ensure its 
accuracy.  Table 1 gives the resultant test statistics from which 
it follows that the proposed framework had a statistically 
significant performance advantage at the 0.01 significance 
level. To visualize results Figure 3 compares  the airfoils 
obtained in one representative test case (blue/dark gray) and 
overlaid with the baseline NACA0012 airfoils (yellow/light 
gray), the rotation angles have been enlarge for emphasis. 
There is a  thickening of the upper curve and tapering in the 
lower curve which both contribute to an increased lift. 

 

 

 

 

 

 

Table 1: Test statistics 

Statistic Proposed 
framework 

Reference 
algorithm EA-PS 

Mean -6.599e+02 -8.073e+01 

Median -9.33e+01 -8.109e+01 

α – significance 
level 

 0.01 

 

 Figure 3: Resultant airfoils. 

V. Conclusion 
Real-world engineering design optimization problems are 
often solved by using computer simulations. Metamodel-
assisted frameworks which are commonly used in such 
settings can struggle when the number of design variables is 
high, namely the problem becomes high dimensional. 

To address this issue this study has proposed a framework 
which incorporates dimensionality-reduction into the 
optimization loop. This is achieved by incorporating a variable 
selection technique into the optimization search, such that the 
proposed framework identifies at each iteration a subset of the 
original variables which are deemed as the most important. 
The optimization process is then performed in a lower 
dimensional space and solutions are projected back into the 
original high dimensional space for evaluation. Performance 
analysis with a simulation-driven engineering problems shows 
the effectiveness of the proposed framework. 
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