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Abstract—This paper is concerned with designing a control 

law for vibration suppression of a flexible spacecraft in the 

presence of external disturbances using distributed 

piezoelectric sensors and actuators. To satisfy pointing 

requirements and simultaneously suppress vibrations, two 

separate control actions are applied. The first action uses 

piezoceramics as sensors and actuators to actively suppress 

certain flexible modes through feedback control. The second 

control action uses open loop controller designed based on 

time optimal control theory to achieve fast maneuver. The two 

controllers has the ability to perform, simultaneously, 

minimum time maneuver and suppress the vibrations 

resulting from the bang-bang control spillover to the flexible 

modes. Modeling and simulation studies for the proposed 

control strategy on a flexible spacecraft have been carried out 

which demonstrate the effectiveness of the proposed approach. 

Keywords—Flexible spacecraft; vibrations; controls; 

piezoelectric materials; sensors and actuators. 

  

I. INTRODUCTION 
In recent years, there has been a considerable interest 

in modelling and control of flexible structures. This is due 

to the use of lightweight materials for the purposes of speed 

and fuel efficiency. Furthermore, many applications, such 

as robotic manipulators, disk drive heads and pointing 

systems in space, are required to maneuver as quickly as 

possible without significant structural vibrations during 

and/or after a maneuver. 

The time-optimal control for general maneuvers and 

general flexible structures has posed a challenging problem 

and is still an open area for research. In particular, the time-

optimal control for rest-to-rest slewing maneuvers of 

flexible structures has been an active area of research, and 

only limited solutions have been reported in the literature. 

Solution to the time-optimal control problem of a general 

flexible system is faced with two main obstacles. First, the 

number of control switching times is unknown a priori and  

must be guessed. Second, as the number of modes included 

in the model is increased, the computer time required by 

these numerical techniques becomes prohibitive. In the 

recent literature, many researchers (see, e.g., Refs. [1–4]) 

and many others listed in the review paper in Ref. [5] have 

developed computational techniques that deal with solving 
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time optimal control of flexible structures. In all of these 

published works, the exact time-optimal control input, 

which is of the bang–bang type, is calculated. From an 

implementation point of view, the bang–bang type of 

control can easily excite the higher order modes that are 

neglected in the model. Other researchers have utilized the 

simplicity of the time-optimal control design for the rigid 

body mode to design a near-minimum- time control for the 

flexible structure. The main difficulty in applying the 

minimum-time control input that is based on only the rigid-

body mode while neglecting all the flexible modes, is the 

vibration that takes place during and after the maneuver as a 

result of control spillover to these modes. This has led 

many researchers to modify the bang–bang control input for 

the rigid-body mode in such a way so as not to excite the 

flexible modes and, therefore, reduce the vibrations. 

Junkins et al. [6] and Hecht and Junkins [7] have used an 

approximation function for the bang–bang control input 

with the objective of eliminating the instantaneous 

transition of control magnitudes at a switching time, 

resulting in a smoother control input. Hurtado and Junkins 

[8] have used soft constraints in the performance measure 

that penalize both the weighted combination of elapsed time 

and the first time-derivative of the control input resulting in 

a smooth near-minimum-time control input. In a similar 

approach, Albassam [9] has modified the time-optimal 

control problem for the rigid-body mode by adding hard 

constraints on the first and second time derivative of the 

control input to eliminate the sudden transition of control 

magnitudes at a switching time, thereby resulting in a 

variety of smooth control functions that minimize the 

energy transfer to the flexible modes. Recently, many 

researchers [10–12] have added point masses to a beam 

driven by a harmonic external excitation to either confine or 

completely eliminate the beam vibrations. These added 

masses can be thought of as simple reactions that provide 

transverse forces to the beam. 

One promising method for actively suppressing the induced 

vibrations, resulting from the bang-band control action, is to 

use piezoelectric materials as actuators since piezoelectric 

materials have the advantages of high stiffness, light 

weight, low power consumption and easy implementation. 

A wide range of approaches have been proposed for using 

piezoelectric material to actively control the vibration of 

flexible structures, such as positive position feedback (PPF) 

[13-15] and velocity feedback [16], and so on. 
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This paper is concerned with the design of a minimum-time 

control input for a flexible structure with one rigid-body 

mode and many flexible modes to perform a quick desired 

maneuver. The objective is to perform a specified maneuver 

in minimum time while reducing any vibrations during and 

at the end of the maneuver. The time-optimal control design 

is based on only the rigid-body mode. This is motivated by 

the fact that the solution for the minimum-time control 

design for the rigid-body mode is easy to calculate and 

results in the minimum-time solution among the solutions 

when any of the flexible mode(s) are added to the model. 

Time-optimal control for the rigid body mode results in a 

bang-bang type of control action that excites the flexible 

modes. To, simultaneously, suppress the resulting 

vibrations, position and velocity feedback control action is 

applied using piezoelectric sensors and actuators mounted 

along the flexible beam. Numerical simulations performed 

on a model of the spacecraft with flexible appendage during 

rest-to-rest maneuver demonstrate the effectiveness and 

feasibility of the method. 

The rest of the paper is organized as follows: Section 2 

presents the model of spacecraft with flexible appendages 

bonded PZT, while Section 3 lay out the design for the 

bang-bang time optimal control input for the flexible 

spacecraft. Section 4 presents positive position feedback 

control using the piezoelelctric sensors and actuators to 

suppress the vibrations during the maneuver. Simulation 

example of the proposed control algorithm on a flexible 

spacecraft, followed by conclusions is given in Section 5. 

II. MATHEMATICAL MODELING 
Figure 1 shows the model of the flexible spacecraft 

under consideration. It consists of a rigid hub with radius b, 

a uniform cantilever flexible beam with surface bonded 

piezoelectric sensors and actuators, the length l and the tip 

mass mt. Coordinates OXY and oxy represents the inertial 

frame and the frame fixed on hub, respectively. The flexible 

deformation at point x with respect to the oxy frame is 

represented by w(x,t), where t denotes time and x ϵ[0,l] the 

beam coordinate. The attitude angle  denotes the relative 

motion of these frames, and Th is the control torque applied 

to the hub. 

For system modeling, the following assumptions are made: 

(i) the beam is considered to be an Euler-Bernoulli beam 

and the axial deformation is neglected 

(ii) the piezoelectric layer is homogeneous and is uniaxially 

polarized; 

(iii) the piezoelectric material is perfectly bonded to the 

beam; 

(iv) the mass of the PZT does not contribute significantly to 

the stiffness of the beam; 

(v) the gravitational effect is neglected for simplicity. 

 

Figure 1. Model of spacecraft with flexible appendages with bonded 

piezoelectric material. 

A. Electro-mechanical Constitutive 
Equation 

The constitutive equation for a piezoelectric element 

can be written, using IEEE standard notation[17], as 

     
           (1) 

            
     (2) 

where D3 is the electric displacement along the axis in 

C/m
2
, E3 is the applied electrical field density in V/m, S1 is 

the strain in m/m, T1 is the stress in N/m
2
,   

  is the 

permittivity of the piezoelectric material at constant stress 

in farad/m, d31 is the piezoelectric charge constants in C/N, 

and    
  is the elastic constants of the piezoelectric material 

under a constant electric field in m
2
/N. Direction x, y, or z is 

represented by the subscript 1, 2, or 3, respectively. 

To calculate the work done by the piezoelectric patches, we 

can rewrite equations (1) and (2) as: 

   (  
     

   )            (3) 

                   (4) 

where    
 

   
  is defined as the short circuit modulus of 

elasticity for the piezoelectric material in the direction of 

the poling axis. Equations (3) and (4) will be used for the 

electro-mechanical coupling. 

B. Equations of Motion 
The derivation in this section follows that in Ref. [18] 

and repeated here for completeness. Using the assumed 

mode model expansion for the beam vibration analysis, the 

elastic deflection, w(x,t), can be represented as: 

qtqxtxw j

n

j

j 


)()(),(

1

   (5) 
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where  n 21  is 1×n vector containing the 

assumed mode shapes and  T
nqqqq 21 is n×1 

vector containing the generalized coordinates. 

Using the extended Hamilton’s principle, the equations of 

motion for the flexible spacecraft with surface mounted 

PZT sensors and actuators can be obtained from the 

equation: 

 
2

1

0)(
t

t
dtWT    (6) 

where T and W are the virtual variation of the kinetic 

energy and work, respectively. T is the total kinetic energy 

of the system and can be expressed as, 
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i
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   (7) 

where Tb represents the kinetic energy of the substructure, 

Tpi represents the kinetic energy of the i-th PZT patch, and 

np is the number of PZT patches. The kinetic energy is 

calculated from the expressions, 

                         (8) 

Where Thub, Tbeam, and Ttip mass are given by, 
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where Ih is the hub moment of inertia, l the length of the 

flexible beam, ρb the mass per unit length of the beam, ρpi 

the mass per unit length of the i-th PZT patch, xi the starting 

x- coordinate of the PZT patch, and hi the length of the PZT 

patch. 

By defining 
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one can obtain an expression for the kinetic energy as: 

qMqqqMqJT TT 
2

1~

2

1

2

1 22     (14) 

Here, the total work of the system W can be given by 

m

n

i

pib WWWW

p

 
1

  (15) 

where Wb is the work done by the beam substructure, Wpi is 

the work done by the i-th PZT patch, and Wm is the work 

done by the external torque. The work done by the beam 

can be expressed as: 
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 (16) 

where Eb is the modulus of elasticity for the beam, Ib is the 

mass moment of inertia for the beam substructure, and Kb is 

the beam stiffness matrix given by: 

 
l

T
bbb dxIEK

0
  (17) 

The work done by the i-th PZT patch is the sum of the 

conservative and non-conservative work terms defined as 

an integral over the volume of the PZT patches, given by: 

    (   )  (   )  
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which can be written as, 

    
 

 
   ∫ ∫                     

      

  

     

  
 (19) 

where yi is the starting point of the piezoelectric patch as 

measured from the neutral axis of the beam, and wpi is the 

width of the i-th piezoceramic wafer. Using equations (3) 

and (4), equation (19) can be expressed as: 
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Using equations (3) and (4) and assumption (iii), we can 

obtain 
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where vi is the electrode voltage and, 
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 (22) 

where tpi is the thickness of the i-th PZT patch. The work 

done by the external torque is given by: 

hm TW     (23) 

Substituting Equations (16), (20), and (23) into Equation  

(15), one can obtain the total work as: 
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Substituting equations (14) and (24) into equation (6), one 

can obtain the following equations of motion for the 

flexible system shown in Fig. 1: 
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Equations (25) are the general nonlinear, time-varying 

equations of motion for the slewing structure. If the elastic 

displacements are small compared to the rigid body 

rotation, second order effects in the first equation of (25) 

can be neglected, resulting in a simplified model: 

hTqJ   ~
    (26) 

On the other hand, since some of the piezoelectric patches 

are used as sensors and some as actuators, some will not 

have actuator voltage inputs and some will not have sensor 

voltage outputs. Therefore, B  and C  matrices can be 

decomposed into sensor and actuator parts corresponding to 

the sensor and actuator voltages, vs and va. Neglecting the 

nonlinear term, the second and third equations in (25) can 

be rewritten as: 

qBCGv

vGBqKqM

T
ssss

aaa
T

1

~



 
  (27) 

where Ga and Gs have been added to represent the sensor 

and actuator amplifier gains, respectively. 

In this paper, we consider a rest-to-rest attitude maneuver 

control problem, in which the control objective is to 

perform fast slewing using bang-bang control input Th, that 

is, the angle (t) is rotated from initial state to a desired 

angle d and at the same time, damp out the vibrations 

induced by the maneuver in the flexible element of the 

spacecraft using the PZT patches. 

III. BANG-BANG CONTROL 
INPUT DESIGN 

Equation (26) and the first equation in (27) can be put 

in matrix form as, 

   ̈            (28) 

where 

   [
  ̃

 ̃  
] ,   [

  
  

],   [
  
      

],   {
 
 
}, 

  {
  

  
}, and   [

  
      

] 

and J,  , and Th are all scalars,  ̃ is a 1×n vector, M and K 

are n×n matrices, Ba is n×na matrix, Ga is na×na matrix, and 

   is na×1 vector. 

In this section, a control input Th(t) is designed for the 

system in equation (31) to perform a rest-to-rest maneuver 

from the initial condition z(0)=[0 0 … 0]
T
 to the final 

condition z(tf)=[f 0 0 … 0]
T
 and in minimum time. From 

optimal control theory, it is known that the control input 

structure is of the bang-bang type, which can be 

characterized by its switching times. Many researchers (see 

e.g. reference [1]) have utilized this characteristic to 

develop numerical techniques that can transfer the time-

optimal control problem into parameter optimization 

problem in terms of the control switching times.  They have 

also noted that as the number of flexible modes in the 

model increases, the number of control switching times also 

increases, thereby, making the optimal control problem 

more difficult, or even impossible, to solve, especially, 

when the number of modes becomes quite large.  On the 

contrary, the problem becomes very simple when only the 

rigid-body mode is considered in the model.  In this case, 

the control input structure is shown in Figure 4, which is a 

bang-bang control input that can be characterized by only 

one switching time ts1 and a final time tf.   

The value of the control input Th(t), shown in Fig. 4, is 

practically constrained according to, 

                       (29) 

Equation (28) can be decoupled using the following 

transformation, 

        (30) 

where U is a matrix with columns consisting of 

orthonormal eigenvectors. The decoupled equations of 

motion, in the modal coordinates, for the system in equation 

(28) becomes 

 ̈          (31) 

 ̈    
                                (32) 

where      is the rigid-body coordinate,       is the i-th 

modal coordinate, and    is the i-th frequency.  The scalars 

             , are defined by: 
[    

   ]                         (33) 

where U is the matrix of eigenvectors. 

The initial and final conditions, z(0) and z(tf), can also be 

transformed to the modal coordinates as: 

[               ]
                    (34) 

 

[ (  )   (  )    (  )]
 
                  (35) 
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Analytical solutions for the control switching and final 

times do exist in the literature (see e.g. reference [9]) and 

are given by, 

    √
     

          
                               (36) 

                                            (37) 

IV. POSITIVE POSITION 
FEEDBACK 

It is expected that applying the bang-bang control input 

torque designed in section III to the hub excites the flexible 

modes and results in excessive vibrations. Therefore, we 

apply positive positon feedback method utilizing the 

embedded piezoelectric sensors and actuators to suppress 

the vibrations and achieve precision pointing accuracy. This 

is done by using the positive position feedback method as 

an active vibration control technique. This technique, in 

effect, adds damping to the flexible modes that results in 

vibration attenuation. 

Applying the coordinate transformation, 

             (38) 

to the system in equations (26) and (27) results in, 

  ̈     ̈     

 ̈     ̇       ̈            (39) 

       
    

    

where   is a matrix with columns consisting of orthonormal 

eigenvectors of   , and 

         (40) 

              
     (41). 

In addition, Modal damping has been introduced to the 

flexible modes, where the modal damping matrix Cd can be 

expressed as Cd =diag(ii). 

To facilitate the vibration compensator development using 

positive position feedback, and by neglecting the   ̈ term 

in equation (39), one can obtain the following decoupled 

vibration motion: 

 ̈     ̇      ̅         (42) 

where  ̅         . 

The conventional PPF compensator [19] can be written in 

the modal co-ordinate form as follows, 

 sfff CC     (43) 

where  is the compensator coordinate, Cf is the 

compensator damping matrix, and f is the stiffness matrix 

of the compensator, and 
1 T

s s s sC G C B V . Considering 

the symmetric placement of the piezoelectric sensors and 

actuators, here, we assume that 
T

as BC  . 

Now, by choosing the control input Gva in the form 

of position feedback from compensator output, we arrive at 

the following set of system and compensator equations, 

 

 ̈     ̇      ̅  ̅    (44) 

 ̈     ̇         ̅ 
    (45) 

The stability condition for the two combined systems is 

known to be [13,14], 
T

aa BGB  > 0  (46) 

i.e., the matrix should be positive definite. 

 

V. NUMERICAL SIMULATIONS 
In order to demonstrate the effectiveness of the 

proposed control schemes, numerical simulations have been 

performed and presented in this section. The key technical 

indexes of flexible spacecraft used in the simulation are 

given in Table 1 and the type of PZT-5A piezoelectric 

ceramic plates [13] is bonded to the surface of the flexible 

appendage. In the simulation, the first five vibration modes 

have been taken into account in the model used for 

simulating the spacecraft at 1 = 3.14 rad/s, 2 = 14.41 

rad/s, 3 = 41.17 rad/s, 4 = 84.78 rad/s, and 5 = 143.61 

rad/s with damping 1 = 2 = 3 = 4 = 5 = 0.0001, 

respectively. 

Table I. The parameters of flexible spacecraft. 

Parameter Value 

Size of the beam 24002003 mm 

Material of the beam Aluminum Aluminum 

Weight of the tip mass 1 kg 

Radius of central rigid body b = 640 mm 

Inertia moment of the rigid body 11 kg.m2 

 

VI. DISCUSSIONS AND 
CONCLUSIONS 

In this paper, two controllers were designed with the 

objective of performing a minimum time maneuver of a 

rigid hub with attached flexible appendage simulating a 

spacecraft model. The first controller, namely, the rigid hub 

torquer, is designed using the time optimal control theory to 

perform a 90 degree maneuver and is based on only the 

rigid body mode alone while neglecting all the flexible 

modes to achieve fast maneuver. The resulting control 

torque is of the bang-bang type and has the advantage of 

performing the fastest response compared to that when any 

of the flexible appendages are included in the control 

design. The second control input is the voltage input to the 

piezo patch actuators, which is responsible to suppress the 

vibrations resulting from the bang-bang control input 
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spillover to the flexible modes. The second control design is 

based on the positive position feedback control design 

method, in which the piezo sensor voltage is feedback to 

the piezo actuator. In the simulation, only one piezo 

actuator and one piezo sensor, bonded symmetrically 

opposite to each other, are used for this study.   

As seen in Fig. 2, the bang-bang control input Th is able to 

perform the maneuver in 3.35 seconds with (Th)max=20 N.m 

. It is also noticed the differences in response between the 

two cases with and without piezo vibration suppression. 

The effectiveness of this design method can also be seen in 

Figs. 3 and 6 which show simulations for the hub angular 

velocities and the first flexible modal displacement for the 

two cases, respectively. Fig. 4 shows the bang-bang control 

torque input resulting in minimum time maneuver, while 

Fig. 5 shows the voltage values input to the piezo actuator 

responsible for vibration attenuation. 

 

 

Figure 2. Time optimal hub angular displacement for two cases: with and 

without piezo vibration suppression. 

 

Figure 3. hub angular velocities for two cases: with and without piezo 

vibration suppression.  

 

Figure 4. Time optimal hub torque input. 

 

Figure 5. Voltage input to the piezo actuator patch. 

 

Figure 6. Simulation results for the first modal displacements for the two 

cases: with and without piezo vibration suppression. 
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