

166

Proc. of the Third Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-077-4 doi: 10.15224/ 978-1-63248-077-4-120

Comparing Graph and Relational Database

Management Systems for Querying Data

Warehouses

Elena Milovanović, Ana Pajić

Faculty of Organizational Sciences, University of Belgrade

Belgrade, Serbia

Abstract— Businesses face the problem of processing

extremely large amount of data every day. Finding and

analyzing relationships between enormous set of connected

data will be the key to successful business. Thus, our work

discusses graph databases which are designed for dealing with

densely connected data. The paper is focused on comparing

Neo4j graph database and traditional Oracle relational

database for querying data warehouses. The first results show

that Neo4j graph database better deals with more complex

questions when amount of data increases, which is very

important for multidimensional analysis. Moreover, the query

performance does not depend on graph dimensionality but only

on size of subgraph covered by query.

Keywords— big data; data warehouse; graph database;

query performance; multidimensional analysis

I. Introduction
In today’s world where competition is very strong,

getting better market position and reaching competitive
advantage are demanding. Amount of data available is
getting bigger and bigger every day and might be petabytes
or exabyte of data consisting of billions to trillions of
records from different sources. The term big data is used to
describe “…datasets whose size is beyond the ability of
traditional databases to capture, store, manage and analyze”
[1].

The problem with loading and using data has shown up
due to the huge amount of data. It can be solved using
database sharding by achieving the spread load of data.
Relational database (hereinafter RDBMS) is the dominant
persistent storage technology and it implements ACID
(Atomicity, Consistency, Isolation, Durability) set of
transaction properties. RDBMS cannot easily support
distinct distributed database servers that can process data
independently due to its table based structure. This has led
to development of another type of databases, named NoSQL
(not only SQL) databases that can support smooth
maintaining of huge amount of data. NoSQL databases do
not distribute logical entity across multiple tables and they
are stored in one single place. Referential integrity between
logical entities is not demanding and they are trying to
preserve consistency inside single entity, but often even this
is not provided.

Graph databases will be briefly mentioned in this paper,
since they can help finding relationships between enormous
sets of data. Graphs are nodes connected by edges, where
adding a new concept, genome, or relationship does not
involve redesigning the whole database. As such, graphs
form the basis for naturally representing genome and

biological data [2]. Moreover, the application of graphs on
DNA analysis and protein synthesis is presented in [3]. It is
pointed out that “graphs truly are one of the most useful
structures for modeling objects and interactions” [4].
Company’s ability to understand, analyze and use big graphs
of densely connected data will be a key of success when
trying to take advantage over its competitors. Awareness of
mentioned above, puts in a center of interest not only data
but also connections between them.

To this end, this paper is focused on comparing Neo4j
graph database and traditional RDBMS for querying data
warehouses. The first results of our benchmark study show
that Neo4j graph database performance does not drop off
markedly as the amount of data increases. Moreover, the
query performance does not depend on graph dimensionality
but only on size of subgraph covered by query.

The remaining of this paper is structured as following.
We first describe the basic concepts of Neo4j graph data
model, its advantages and shortcomings in comparison to
RDBMS. In section 3 possible usages of graph databases in
data warehousing is discussed. Section 4 describes the
implementation of our benchmark study and the most
relevant results are given in section 5. Section 6 follows
with a discussion of results and ideas for future work.

II. Graph Databases

A. Differences Between Relational and
Graph Databases
NoSQL today is the term used to address to the class of

databases that do not follow RDBMS principles, specifically
being that of ACID nature, and are specifically designed to
handle the speed and scaling of the likes of Google,
Facebook, Yahoo, Twitter, and many more [5]. NoSQL
systems can be grouped in many ways depending on criteria
used. The most spread categorization is based on data model
on which system is based. According to this criterion,
NoSQL systems can be divided into four classes: Key-value
stores, Document stores, Column family, Graph databases.
This work is focused on graph databases.

Graph space can be very wide and complex. According
to [6] there are two categories of graph space:

 Graph databases which enable online graph
persistence and these are usually accessed from
some application. They can be compared to OLTP
databases.

167

Proc. of the Third Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-077-4 doi: 10.15224/ 978-1-63248-077-4-120

 Graph compute engines which denote technologies
that enable offline data processing. They are similar
to technologies that can be used for data analyzing,
like data mining and OLAP.

Among many advantages like fast data access, indexing
and so on, the most important, that distinguish graph
databases from relational, are better performances and
schema-less structure. NoSQL databases are far much better
in dealing with connected data than RDBMS. When amount
of data is increasing performances of join queries are
tremendously decreasing. In this situation NoSQL databases
stay stable because their performance does not depend on
data volume. Because of its structure and schema, graphs are
by their nature upgradable and expendable. New subgraphs
can easily be added to existing data set without affecting
application functionalities or previous queries execution.
When we are talking about schema depending on when it is
verified there are two different approaches - schema on
write and schema on read. This approach distinguishes
graph and RDBMS. In traditional database management
system (hereinafter DBMS), like relational, schema is read,
verified and applied on data loading. This means that if data
do not fit schema, load is failing and transaction rollbacks.
On the other hand, NoSQL databases use approach schema
on read. This means that schema is applied in a moment of
reading data when user issues a query. This enables fast
loads and supporting multiple schemas for the same data.
Also data format might be unknown because queries against
the data haven’t been defined.

For problem presentation Neo4j technology will be used
as representative of graph databases.

B. Basic Concepts in Graph Data Model
Nodes and relationships are basic building blocks in

graphs. Node can be used to represent any entity in graph
and it stores data that depict specific entity. In Neo4j node
can contain attributes, relationships with other nodes and
labels. Each relationship in graph has its specific start and/or
end nodes, dangling relationships are not allowed. For
relationship, type can be defined which can be treated as
relationship name. Relationships can have attributes as well
as nodes. Even though relationships are directed, they are
equally well traversed in both directions so there is no need
to create duplicate relationships in the opposite direction. In
Neo4j relationship of one node with itself is also supported,
in other words relationship can have the same start and end
node.

Attributes are presented as key-value pairs, where key is
defined as string and values can be defined as some
predefined data type or array which elements are predefined
types. Null values are not allowed, if value is missing then
that attribute will be omitted. Labels are used for node
grouping which means that all nodes that has the same label,
belong to same set. Labels are simplifying queries because it
is possible to run query on certain labeled subset in graph.
We will be free to compare the effect of labels to effect of
columns that we use in SQL GROUP BY statement in
relationship databases. One node can have zero or many
labels. Label name must not be an empty string. Since labels
can be attached and detached in runtime, they can also be
used for denoting of node current state. Path contains one or
more connected nodes. Paths are usually a result of query

execution on graph database or a result of traversals. Fig. 1
shows the logical structure of Neo4j graph database data
model. In this meta-model all concepts and relationships
between them are presented. For meta-model presentation
IDEF1X notation is used.

III. Graph Databases in Data
Warehousing

In today’s world data warehousing is very important
aspect for decision making process and future planning. In
order to this we can use OLAP operations like roll-up, drill-
down, slice-and-dice and pivot on multidimensional data
cube model. Even though graphs are studied for a long
period of time, weak point for graph databases still is natural
OLAP support. For multidimensional analysis in RDBMS
there are many algorithms and systems that can support
them. This area has not been explored that much in
multidimensional networks. In RDBMS e.g. we can
calculate amount of products sold in each store, each city, or
in entire country but this kind of analysis on
multidimensional networks will not give only numbers but
also network structure for each product, city, and country as
well. This can lead us to interesting results and maybe will
help us understand why sale is higher in certain store, city or
country. Using demographic and other data in graph we
could also see purchasing habits, standard of living for some
country and get wider picture, that will help us understand
resulting numbers.

In past few years there are more and more papers that
deal with using graphs in data warehousing. In [7] Graph
Cube is introduced, which is a model that can be used in
data warehousing. It can provide OLAP queries on large
multidimensional networks. For its implementation
characteristics of multidimensional networks in combination
with existing data cube techniques are used.

Figure 1. Neo4j graph database meta-model

This new concept enables using aggregations and SQL
GROUP BY statement from RDBMS world on
multidimensional data cube model. Graph Cube integrates
both multidimensional attributes and network structures.

168

Proc. of the Third Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-077-4 doi: 10.15224/ 978-1-63248-077-4-120

That paper introduced a new kind of query, which crosses
multiple multidimensional spaces of the network and these
are called cross-cuboid queries (crossboid queries). This
means that aggregate networks can become the measure of a
graph cube.

Bachman [8] in his work speaks about structural
analytics which is an additional category of analytical
processing which deals with qualitative and quantitative
aspects of the actual structure of the graph network.
Business Intelligence with Integrated Instance Graphs
(BIIIG) framework for integration and business intelligence
based on graph data is proposed in [9], [10]. This framework
uses graph models to present metadata and instance data
from different sources, like Enterprise Resource Planning
(ERP) and other similar systems. In [11], the new graph
semantic that is based on object oriented multidimensional
data model, named GOOMD, is presented. In order to
specify conceptual level design of data warehouse, this
model defines a list of graph based formal constructs.
GOOMD gives a realization of different logical structures of
data warehouse like star, snowflake, and so on. Also this
model provides an operational model for OLAP that is used
for operations like roll-up, drill-down, slicing, dicing, drill-
across and drill-through.

There are some technologies that are free and can be
used in combination with some graph database system. For
instance, RapidGrapher product can be used for data
integration. It provides a simple way to map data from
existing relational database into a single, searchable and
navigable graph, and thus allows managing RDBMS data as
a graph. Bachman in his work introduced GraphAware
Neo4j framework. It offers Neo4j server extension that
allows developers to build (REST) application program
interface (API) on top of Neo4j using Spring Model–view–
controller (MVC). Also, available is a runtime environment
for both embedded and server deployments which allows the
use of pre-built and custom modules, which author called
GraphAware Runtime Modules. These modules extend the
core functionality of the database by transparently enriching,
modifying and preventing ongoing transactions in real-time.

Since Neo4j Cypher already provides some analytical
features for graph pattern matching and aggregation, they
will be used for benchmark study.

IV. Solution Implementation
This research utilizes a test dataset provided free by

Microsoft- the AdventureWorks. The dataset is divided into
four schemas: Sales, Production, Purchasing, Human
resources and one common model called Person. For our
purpose, we were concerned with querying on the sales
related facts within the dataset. Tables OrderHeader,
OrderDetail, Product, Customer and Territory is used for the
benchmark study. The original data values provided by
Microsoft the AdventureWorks dataset is used since its size
is large enough to effectively compare query performance.
In this dataset 19 820 customers, 10 territories, 504 products
and 31 465 orders are stored. Fig. 2 shows a selection of
tables and their relationships using IDEF1X notation.

Customer

CustomerID

AccountNumber

Territory

TerritoryID

Name

Product

ProductID

Name

OrderHeader

SalesOrderID

DueDate

ShipDate

SubTotal

OrderDate

Status

CustomerID (FK)

TerritoryID (FK)

OrderDetail

SalesOrderDetailID

SalesOrderID (FK)

UnitPrice

LineTotal

OrderQty

UnitPriceDiscount

ProductID (FK)

Figure 2. Relational schema

As RDBMS Oracle 11g Express Edition is used. Stored
data is then converted into CSV files and imported into
Neo4j 2.2.1 environment. For each tuple in each table, one
node is created and the relationships between all nodes. For
this example there are 31 465 relationships for Order –
Customer, 31 465 relationships for Order – Territory, 54 998
for Order – OrderDetail and 31 998 for OrderDetail –
Product, resulting in 149 926 relationships at all.

While OLAP query performance comparison between
the traditional RDBMS and Neo4j graph database is a
primary objective of this research, the control environment
is used and both systems are installed on the exact same
machine hardware. The data systems were not running
simultaneously while the other was being queried and all
other unnecessary processes on the machine were shutdown
to allow maximal resource utilization in testing phase.

Neo4j has its own language Cypher which is declarative
and it uses ASCII-Art to represent patterns. This language
enables to describe what user wants to select, insert, update
or delete from Neo4j. Also it is used for creating nodes,
labels, relationships and properties. Since relationships are
equally well traversed in both directions there's no need to
create duplicate relationships in the opposite direction. In
this example four relationships are created:

● Territory – ORDERED_IN -> Order

● Customer – BOUGHT -> Order

● Order – HAS -> OrderDetail

● Product – PRODUCT_DETAIL -> OrderDetail

Fig. 3 presents node Order with number 43677 and its

relationships. Order has three types of relationships and

these are: HAS with node OrderDetail, ORDERED_IN with

Territory and BOUGHT with node Customer. The

orientation of these relationships can be seen on the Fig. 3.

Fourth relationship that is created for this experiment is

PRODUCT_DETAIL between nodes OrderDetail and

Product. Each node has its attributes according to relational

data model that was presented earlier.

169

Proc. of the Third Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-077-4 doi: 10.15224/ 978-1-63248-077-4-120

Figure 3. Node Order and its relationships

V. Experimental Results and
Analysis

Aggregate functions are particularly important for using
graphs in data warehousing. To calculate aggregated data,
Cypher offers aggregation, much like SQL GROUP BY
statement. Aggregate functions take multiple input values
and calculate an aggregated value from them. Example is
AVG function that calculates the average of multiple
numeric values, or MIN function that finds the smallest
numeric value in a set of values. Aggregation can be done
over all the matching subgraphs, or it can be further divided
by introducing key values. These are non-aggregate
expressions that are used to group the values going into the
aggregate functions.

To test the performance of using Neo4j in data
warehousing, queries were designed with one or more
logical joins to simulate questions complexity that business
users might ask in regards to this dataset. We executed the
queries on different amount of data on both DBMS in order
to show Neo4j performance stability. Three different queries
are executed on the dataset and they are presented in Table I.
In order to quantify the query performance, we measured
multiple execution times for our earlier established queries.
Ten execution times are measured and mean execution time
is presented. Mean execution time for query Q1, expressed
in milliseconds, is presented in Table II.

If we compare execution time for Neo4j and Oracle
measured on 5000 records, we can see that Neo4j needs
noticeably more time. In next two phases of experiment,
same query has been executed on 10000 and 19119 records,
respectively.

TABLE I. THREE TYPES OF QUERIES

Cypher SQL

Q1

MATCH (c: Customer)- [p] -
> (o: Order)

RETURN c, sum (o.SubTotal)

order by c.CustomerID

select c.customerid,

sum(oh.SUBTOTAL)
from order_header oh join customer c on

(c.customerid = oh.customerid)

group by c.customerid
order by c.customerid

Q2

MATCH (o: Order)-[r] -> (d:
orderDetail) RETURN o, avg

(d.LineTotal) order by

o.SalesOrderID

select oh.salesorderid, avg(od.linetotal)

from order_header oh join order_detail
od on (oh.salesorderid = od.

salesorderid)

group by oh.salesorderid
order by oh.salesorderid

Q3

MATCH (t:Territory) -[w]->

(o:Order) -[q]->

(d:orderDetail) <-[r]-
(p:Product) return t.Name as

territory , p. Name as product,

sum (d.OrderQty) order by

t.Name, p.Name

select t.name as territory, p.name as
product, sum (od.ORDERQTY)

from order_header oh join order_detail

od on (oh.salesorderid = od.salesorderid)
join territory t on (oh.territoryid =

t.territoryid) join product p on

(od.productid=p.productid)

group by rollup(t.name, p.name)

order by t.name, p.name

TABLE II. Q1 QUERY EXECUTION RESULTS

Amount of

data

Neo4j mean

execution

time (ms)

Percentage

increase of

mean

execution time

(Neo4j)

Oracle mean

execution time

(ms)

Percentage

increase of

mean

execution

time

(Oracle)

5000 0.71590 0.08240

10000 0.83650 16,85 % 0.15180 84,22 %

19119 1.08840 52,03 % 0.29470 257,65 %

Percentage increase of mean execution time between each

phase of experiment in comparison to first phase is also

presented in the table. Thus we get much better,

comprehensive review. Now we can notice that there was a

significant increase in execution time for Oracle RDBMS

results as number of records grows. Neo4j has proven to be

much more stable when the amount of data increases. These

results support the assumption that NoSQL databases stay

stable because their performance does not depend on data

volume. On Fig. 4 plot of percentage increase in execution

time is presented. X axis refers to amount of data and Y axis

refers to percentage increase in execution time. Red line is

used for Oracle results and blue line for Neo4j results.

Results for query Q2 have also been measured in ten

iterations and mean execution time, expressed in

milliseconds, is presented in Table III.

Figure 4. Q1 query- plot of percentage increase in execution time

170

Proc. of the Third Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-077-4 doi: 10.15224/ 978-1-63248-077-4-120

TABLE III. Q2 QUERY EXECUTION RESULTS

Amount of

data

Neo4j mean

execution

time (ms)

Percentage

increase of

mean

execution time

(Neo4j)

Oracle mean

execution time

(ms)

Percentage

increase of

mean

execution

time

(Oracle)

5000 0,6780 ms 0,1334 ms

10000 0,9343 ms 37,80 % 0,1990 ms 49,18 %

11600 1,2231 ms 80,40 % 0,2385 ms 78,79 %

We can notice the similar situation on Fig. 5. The

interesting thing is that percentage increase in mean

execution time for third phase, with 11 600 records, is

similar for both databases. More precisely, Neo4j results

greater increase in comparison to Q1 query execution

results. This could be explained by number of relationships

that should be traversed between nodes Order and

OrderDetail. Previously, we have shown that 54 998

relationships have been created between these two types of

nodes. On the other hand, 31 465 relationships were formed

between nodes Customer and Order. This can explain

greater mean execution time since in second query there are

almost twice as many relationships that should be traversed

then in the first query. In this case, size of subgraph affected

execution time. The second assumption has been proved -

execution does not depend on graph dimensionality but only

on size of subgraph covered with query.

The third query was design with two logical joins to

simulate questions complexity. Results for Q3 have also

been measured in ten iterations and presented in Table IV. It

is well known that performance of join queries is

tremendously decreasing in RDBMS, when amount of data

increases. Our experiment shows that the mean execution

time for third phase, with the most records, is similar for

both databases. The Neo4j graph database better deals with

more complex questions which is very important for

multidimensional analysis. As shown in Fig. 6, there is a

significant increase in mean execution time for Oracle

RDBMS than for Neo4j database as number of records

grows.

Given the results of the queries performance, we can

conclude that these results are suggestive of the fact that

graph databases are good solution for dealing with big data.

Neo4j database is better solution when the amount of data

increases.

Figure 5. Q2 query- plot of percentage increase in execution time

TABLE IV. Q3 QUERY EXECUTION RESULTS

Amount of

data

Neo4j mean

execution

time (ms)

Percentage

increase of mean

execution time

(Neo4j)

Oracle mean

execution time

(ms)

Percent

age

increase

of mean

executio

n time

(Oracle)

100 0,8947 ms 0,1078 ms

300 0,8738 ms -2,34 0,1274 ms 18,18

438 0,9467 ms 8,34 0,1584 ms 24,33

Figure 6. Q3 query- plot of percentage increase in execution time

In all cases, the percentage increase in mean execution

time for Neo4j database is significantly smaller than for

Oracle RDBMS, when amount of data increases. Different

amount of data in each case is due to the fact that queries in

graph databases do not access all data but just a certain part

of graph.

VI. Conclusion
For every company getting better market position and

reaching competitive advantage are demanding. This can be
achieved by using big data potential to help them improve
operations and make faster, more intelligent decisions. Since
this is not the problem RDBMS can handle with, new type
of databases has shown up, known as NoSQL databases. In
this paper, we studied a special type of NoSQL databases,
namely Graph database. Special attention was paid to the
possibility of using OLAP analysis in Graph databases.

We conducted several performance experiments to
compare Neo4j graph database to Oracle relational database
system, for use as underlying technology for
multidimensional analysis. Neo4j graph uses its declarative
language Cypher to cover basic analysis. It offers
aggregation, much like SQL GROUP BY statement and has
some group functions like MAX, MIN, SUM, AVG and
some statistical analysis like standard deviation. The query
performance was monitored on both systems and Neo4j had
proven to be much more stable when the amount of data
increases. In all cases, Neo4j needed noticeably more time,
but there was a significant percentage increase of mean
execution time for Oracle RDBMS than for Neo4j database
as number of records grows.

Future studies can examine the performance of query
execution on a larger dataset to better show the differences
between mean execution time for Oracle RDBMS and graph
database Neo4j. Moreover, we should explore the
possibilities of using Cypher language for much more

171

Proc. of the Third Intl. Conf. on Advances in Information Processing and Communication Technology - IPCT 2015
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-077-4 doi: 10.15224/ 978-1-63248-077-4-120

complex data analysis. More attention will be paid on Graph
cube as a solution for creating data cube model, since
authors of Graph Cube did not consider to use Cypher for
analyzing. In order to get better results, RapidGrapher could
be used for data integration and GraphAware framework for
OLAP analysis over created graph cube. We will extend our
research to these new technologies and test them for data
integration and in-depth OLAP analysis.

The problem of temporal graphs still lies unaddressed.
Temporal graphs capture changes in graphs over time and
efficient techniques to represent, store and query dynamic
graphs are essential for using graph databases in data
warehousing. Neo4j does not provide intrinsic support for
time-varying graph, but the property graph representation
can be used. It requires more complex data model and to
associate nodes and edges with time intervals in arbitrary
ways. In the future work we plan to investigate Neo4j graph
and Cypher query language for versioning.

References

[1] S. A. Tinkhede and S. P. Deshpande, “Big Data- The Vast Growing

Technology with its Challenges and Solutions,” Int. J. Comput. Sci.
Mob. Appl., vol. 3, no. 1, pp. 33–38, 2015.

[2] M. Graves, E. R. Bergeman, and C. B. Lawrence, “A graph
conceptual model for developing Human Genome Center databases,”
Comput. Biol. Med., vol. 26, no. 3, pp. 183–197, 1996.

[3] S. Navlakha, M. C. Schatz, and C. Kingsford, “Revealing biological
modules via graph summarization,” J. Comput. Biol. a J. Comput.
Mol. cell Biol., vol. 16, no. 2, pp. 253–264, 2009.

[4] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,
“A comparison of a graph database and a relational database,” in
Proceedings of the 48th Annual Southeast Regional Conference,
2010, pp. 1–488.

[5] G. Vaish, Getting started with NoSQL. Packt Publishing, 2013.

[6] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. 2013.

[7] P. Zhao, X. Li, D. Xin, and J. Han, “Graph Cube: On Warehousing
and OLAP Multidimensional Networks,” in Proceedings of the 2011
ACM SIGMOD International Conference on Management of data,
2011, pp. 853–864.

[8] M. Bachman, “GraphAware : Towards Online Analytical Processing
in Graph Databases,” Imperial College London, 2013.

[9] A. Petermann, M. Junghanns, R. Muller, and E. Rahm, “BIIIG:
Enabling business intelligence with integrated instance graphs,” in 5th
International Workshop on Graph Data Management (GDM 2014),
2014, pp. 4–11.

[10] A. Petermann, M. Junghanns, R. Müller, and E. Rahm, “Graph-based
Data Integration and Business Intelligence with BIIIG,” in
Proceedings of the VLDB Endowment, 2014, pp. 1577–1580.

[11] A. Sarkar, S. Choudhury, N. Chaki, and B. Swapan, “Conceptual
Level Design of Object Oriented Data Warehouse: Graph Semantic
Based Model,” J. Comput. Sci., vol. 8, no. 4, pp. 60–70, 2009.

About Author (s):

Ana Pajić is a teaching assistant of

Information systems at Faculty of

Organizational Sciences, University of

Belgrade. Her current research interests

include diffrent aspects of Business

Information Systems, Semantic-based

enterprise modeling and Database

Management Systems.

Elena Milovanović is a teaching

assistant of Information systems at

Faculty of Organizational Sciences,

University of Belgrade. Her current

research interests include diffrent

aspects of Information systems design,

Geographic information systems and

Database Management Systems.

