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Abstract—Nonnegative Tensor Factorization has previously 

been used in many multi-way data analyses. We use NTF 

model to do personalized paper recommendation. For 

recommendation, we analyze four different multiplicative 

algorithms for NTF based on different decomposition models 

and different optimization functions. On one hand, one part of 

algorithms use CP decomposition, the other part use Tucker 

decomposition. On the other, half of algorithms minimize the 

least squares error while the others minimize the Kullback-

Leibler divergence. Further, we also compare recommendation 

performance with different rank NTFs. From our experiments, 

nonnegative Tucker decomposition based on KL divergence 

has the better result, and to some extent, lower rank NTF can 

get most of information from dataset. 

Keywords—personalized recommendation, sparsity, tensor 

factorization, multiplicative update 

I.  Introduction 
With latent semantic analysis (LSA[1]) applications in 

the field of information retrieval, matrix factorization are 
frequently used today in variety fields. Especially in the 
recommended system[2], e.g., participants using 
collaborative filtering method won the first place [3]. 

Gradually transformations become nonnegative, data 
interpretability become stronger, and nonnegative matrix 
factorization (NMF) can well represent the local 
characteristics of things, so it is successfully applied to 
psychometric, chemometrics, image analysis, graph analysis 
and signal processing. The most popular approach of NMF 
algorithm is proposed by Lee et al.[4], which uses 
multiplicative update.  

However, 2D matrix sometimes cannot represent data 
more than three-mode well. E.g., recommending papers 
according keywords  experiment in our study,  if we only 
use papers and their keywords’ relation, this will lose other 
latent but important information such paper’s authors, venue 
and so on. Therefore, if  we directly transfer high dimension 
structural data into low data reluctantly, it will lose a lot of 
structure. Data mining in higher dimension becomes a trend. 
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Nowadays, machine learning method based on tensor 
factorization has been widely studied and applied. For 
recommendation, we cannot know exactly all values of 
tensor structural data, so sparse tensor factorization is 
particularly important in our study. 

We make use of authors information in CiteSeer dataset 
besides title and citation. So for a given title or keywords, 
we can recommend papers for a particular author, it is more 
appropriate for recommendation because different authors 
are good in different areas. We have more reasons to believe 
that authors would like to read these papers about their areas. 

In this paper, we use sparse tensor factorization to  do 
personalized paper recommendation. There are many 
factorization tools such as the MATLAB Tensor Toolbox by 
Badar et at[5]. However, this toolbox not only cannot handle 
large-scale sparse tensors, but also cannot select flexibly 
optimization function and decomposition method.  

Because of the sparsity of the tensor data, it 
decomposition can certainly be optimized. We are inspired 
by the algorithm in [6], where we take advantage of 
alternative sigma symbols. It can greatly reduce Tucker 
decomposition’s computation complexity on sorted 
sequential data. we compare the different factorization 
methods  and different optimization functions on three-mode 
data recommendation by doing experiments. In addition, we 
compare efficiencies under different rank decompositions. 

In the remaining part, we survey related works in section 
II. In section III, we introduce our main models with some 
details on parameters computations, and analyze the iterative 
complexity of training algorithm. In section IV, we apply 
our methods on personalize recommendation. Finally, we 
give conclusions in section VI. 

II. Related Work 
Lee et al.[4] propose nonnegative matrix factorization,  

i.e., variables are nonnegative in model. This decomposition 
is widely useful as it results’ easy interpretable 
representations. For another thing, In [7], Donoho D et al. 
demonstrated the feasibility of large data compression and 
completion, and matrix completion theory is also a new 
information collection method [8].   

Kim et al. [9] expand  the NMF to in higher dimension, 
i.e., nonnegative tensor factorization (NTF), and give proofs 
of convergence. After that, a hot wave of high dimension  
nonnegative tensor factorizations are rising. Mørup et al. [10] 
proposed algorithm for sparse NTF. It guarantee to find the 
global minima by adding to a part of parameters’ constraints. 

There are many experiment compare NTF with NMF. 
E.g., T.hazan et al. [11] use the NTF to exact image’s local 
parts feature, and compare with using nonnegative matrix 
factorization on a matrix of vector images. The results show 
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that treating these images as a three-order tensor  is better 
than 2D matrices. 

B.W.Bader et al.[12]  put email data as a 3-dimenstion  
tensor when studying Enron Email data. Chi et al. [6] 
applied NTF to analyze the blogosphere and personalized 
recommendation. Phan et al.[13] apply tensor 
decompositions to feature extraction and classification in 
high dimensional data. Nickel et al. [14] solved relational 
learning task with NTF. More application about tensor 
factorization can be seen in [15]. 

In tensor completion, Liu ji et al. [16] proposed low-rank 
tensor completion(LRTC) to estimate miss value in 
incomplete tensor. 

III. Model 

A. Background 
A brief introduction of mathematical notations is 

presented, which will be used in later sections. Tensor is a 
promotion of 1D vector and 2D matrix, which can represent 
high dimensional information directly. In this paper, scalars 

by lowercase letter including Latin characters (e.g., , ,a b  ), 

vectors by lowercase(e.g., ,p q ), matrices by capital letter 

(e.g., ,X Y ), and tensors by calligraphic letters(e.g., ,A B ). 

Additional, we reserve , , , , , , , ,i j k l m n p q r to indicate the 

indices of matrices and tensors, , ,O H I to indicate all-zeros 

matrix, all-ones matrix and identity matrix respectively, 

, ,O H I to indicate all-zeros tensor, all-ones tensor and 

identity tensor respectively. Other important notations about 
tensor are in Table. I. 

TABLE I.  NOTATION DESCRIPTION  

Notation Description 

A  
2 1/2( )

ijk

ijkA  

A B  )( ijk ijk ijk A B  

A B  
)( ijk ijk ijk A B  

.*A B  ( *)ijk ijk ijk A B  

. /A. B  
( /)ijk ijk ijk A B  

,A B  
*ijk i

jk

jk

i

A B  

( , )LS A B  
2

A B  

( || )KL A B  
log

ijk

ijk ijk ijk

ijk ijk ijkijk

   
A

A B
B

 

 

In ( , , )L M N rank tensor decomposition, 3-dimension 

tensor can be represented by a smaller core tensor and n 

related factor matrices. We use , ,I L J M K NX Y Z  
 to denote 

the n matrices and L M N G to denote the core tensor, 

, ,il jm knX Y Z  to denote matrices’ elements and lmnG  to denote 

core tensor’s elements. We call n-rank decomposition when 
L M N n   . Two common decomposition methods are 

CP decomposition (CANDECOMP/PARAFAC) [17][18] 
and Tucker decomposition [19]. CP decomposition split 
tensor into n factor matrices, where is denoted by (1) 

         , ,X Y Z  A Bb                              (1) 

Which can be written in an element-wise form as (2) 

                               * *ijk i j

n

n n knX Y Z Pb                           (2) 

Tucker decomposition split tensor into n factor matrices, 
where is donated by (3) 

                  ; , ,X Y Z  G A Bb  , G  is a core tensor.         (3) 

Which can be written in an element-wise form as (4) 

                           * * *ijk lmn il jm kn

lmn

X Y Z Pb G                      (4) 

CP decomposition can be seen as a special case from 
Tucker decomposition, when L M N   and core tensor G  

is (5) 

                                
1

0
lmn

l m n

else

 
 


G                             (5)

 

That is  G I . 

Finally, we define some symbols to denote few certain 
computation, which are in Table II. 

TABLE II.  SYMBOL DEFINITION  

Symbol Definition 

 , ; , ,X Y ZA  ( ) * * *ijk illmn

ijk

jm knX Y Z A  

 , ; , ,Y ZA G  a 
,

( ) * * *ijk lmnil

jk mn

jm knY Z  A G  

 , , ,Y ZA a ( ) * *ii jkn

j

k

k

jn nY Z A  

a. Same as Y and Z 

B. Nonnegative Tensor Factorization 
We formally consider algorithms for solving an 

nonnegative tensor factorization (NTF). NTF can be 
transformed as follows: 

Give a nonnegative tensor A , find a nonnegative tensor 

G  and nonnegative matrices , ,X Y Z such as  , ,X Y Z A  

or  ; , ,X Y Z G A . The above are CP decomposition and 

Tucker decomposition. 

1) Cost functions 
To find a proper approximate for tensor factorization. 

We need to define cost functions that quantify the cost of 
approximation. The most common measure are least 
squares(LS) minimization based on Gaussian noise model 
and Kullback-Leibler(KL) divergence minimization based 
on Poisson noise. 

Least squares minimization use the Euclidean distance 

between A and B , i.e., ( , )LS A B , and KL-divergence 

minimization use the KL-divergence between A and B , i.e., 

( || )KL A B .  

So we consider two alternative loss functions of NTF as 
optimization problems. That loss function based on LS is (6) 
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 
, , ,
min ; ,( , ),

, , , 0. .

X Y Z
LS

s

X Y Z

X Y Zt 

G
A G

G
 or 

 
, ,

min , ,

, ,

(

. 0

, )

.

X Y Z
X Y Z

X Y

LS

s t Z 

A
     (6)

 

And based on KL is (7) 

 
, , ,
min ; , ,

, ,

( || )

. . , 0

X Y Z
X Y Z

X

KL

Y Zs t 

G
A G

G
 or 

 
, ,

min ,( || ,

, 0

)

. . ,

X Y Z
X Y Z

X Y

KL

s t Z 

A
 (7) 

2) Update rules 
We solve the problems by multiplicative update based on 

gradient descent. E.g., for Tucker decomposition’s LS loss 
function problem as (8) 

                          
 

, , ,
min ; ,( , ),

, , , 0. .

X Y Z
LS

s

X Y Z

X Y Zt 

G
A G

G
                       (8) 

Above A is known, where will not change with iteration, 

and value of , , ,X Y ZG  are associated with the result of 

each iteration. 

First, we write the basic formula from gradient descent 
as (9-13) 

                               ; , ,X Y Z A B G                               (9) 

    , ; , , , ; ,  ,lmnlmn lm mn l nn l m
X Y Z X Y Z   


 


G G A B   (10) 

        , ; , ,  , ; , ,il il ilil il Y ZX X Y Z      
 

G GA B        (11) 

     , ; , , , ; , ,jm jm jmjm jk X ZY Y X Z     





A G GB      (12) 

    , ; , ,  , ; , ,kn kk knn nk n X YZ Z X Y     
 

G GA B        (13) 

Then, we rescale the   and set as(14-17) 

            * , ; , , / , ; , ,lmn lmn lmlm nn X Y Z X Y Z   G A B   (14) 

               * , ; , , / , ; , ,il il il il
X Y Z Y Z   A G GB         (15) 

            * , ; , , / , ; , ,jm jm jm jm
Y X Z X Z   A G GB      (16) 

             * , ; , , / , ; , ,kn kn kn kn
Z X Y X Y   A G GB       (17) 

So, we get the multiplicative update rules of Tucker 
decomposition’s LS loss function problem on (18-21) 

                 , ; , , . / , ; , , .*X Y Z X Y Z  G A B G         (18) 

                 , ; , , . / , ; , , .*X Y Z Y Z X  G GA B         (19) 

                 , ; , , . / , ; , , .*Y X Z X Z Y  G GA B         (20) 

                 , ; , , . / , ; , , .*Z X Y X Y Z  G GA B         (21) 

The similar as Tucker decomposition’s KL loss function 
problem on(22-26) 

                                          . /P A B                                (22) 

                 , ; , , . / , ; , , .*X Y Z X Y Z  G P H G         (23) 

                 , ; , , . / , ; , , .*X Y Z Y Z X  G GP H         (24) 

                 , ; , , . / , ; , , .*Y X Z X Z Y  G GP H         (25) 

                , ; , , . / , ; , , .*Z X Y X Y Z  G GP H          (26) 

Optimization based on CP decomposition will get 

similar update rules, just to make G I and not to updates 

G . 

C. Implementation Details and 
Complexity Analysis 

1) Implementation details 
The update equations on the above section involve tensor 

A ’s , ,I J K  dimensions and matrices , ,X Y Z ’s , ,L M N  

( N ) dimensions. The most commonly solution need 

six(four) cycles complexity at least in Tucker(CP) 
decomposition. It will take long time on updating 
parameters, especially in Tucker decomposition.  However, 

we notice the given tensor  A  is a very sparse tensor, 

because many values of  A  are zeros in NTF model. For 

this reason, on the one hand, we can store only non-zero 

elements of A . On the other hand, we can greatly reduce 

Tucker decomposition’s computation complexity by making 
use of alternative sigma symbols and sorted sparse data, e.g., 
these formula can been write as (27-28). 

           , ; , , il jm ijk knlmn
i j k

X Y Z X Y Z   AA            (27) 

Which used in updating G  of Tucker decomposition. If 

A ’s known elements are access in sequential way and 

ordered by , ,i j k , the above formulas can be calculated at 

a lower complexity.  

 Algorithm 1 using pseudo-code illustrates how to 

calculate  , ; , ,X Y ZA on these idea as in Figure 1. 

Algorithm 1   Calculate  , ; , ,X Y ZA  

1 for 1n  to  N 

2 ( , ) 0D i j   

3 for ijkA  to length[ ijkA ] 

4 ( , ) *ijk knD i j Z A  

5 for 1m  to  M 

6 0id   

7 for ( , )D i j  to length[ ( , )D i j ] 

8 ( , )*i jmd D i j Y  

9 for 1l   to  L 

10  , ; , , 0
lmn

X Y Z A  

11 for 
id  to  I 

12   *, ; , , i illmn
X Y Z d X A  

Figure 1.  Algorithm of calculate  , ; , ,X Y ZA  in updating G  

By sorting A ’s known elements in the format of 

, ,i j k , , ,j i k and , ,k i j , computing ,X Y and Z  can 

be conducted in a similar fashion. 

2) Complexity analysis 
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In the following discussion, it is assumed that there are 

( , , )num i j k distinct ( , , )i j k pairs in the dataset, ( , )num i j , 

( , )num i k  and ( , )num j k  distinct ( , )i j pairs, ( , )i k pairs and 

( , )j k pairs in the dataset. Further on, we define 

 1 max , ,v I J K ,  2 max ( , ), ( , ), ( , )v num i j num i k num j k , 

3 ( , , )v num i j k , and 3m LMN ,  2 max , ,m MN LN LM , 

 1 max , ,m L M N . Obviously, 1 2 3v v v  , 1 2 3m m m  . 

Importantly, We only need to store non-zero elements of 

A  in some sequential way. Because of core tensor is a 

diagonal tensor, CP decomposition’s  , , ,Y ZA  can be 

solved in ( 3* )O v N , and  , , ,Y ZB can be solved in 

2( 1* )O v N  if we write  , , ,
in

Y ZB  as (28) 

               , , , * *ir jn jr kn krin
r j k

Y Z X Y Y Z Z
  

   
  

  B           (28) 

For Tucker decomposition, it can be easily seen that in 

algorithm 1, we can simplify the  , ; , ,X Y ZA ’s 

complexity of ( 1* 3 2* 2 3* 1)O v m v m v m   by separating the 

unrelated sigma symbols. And  , ; , ,X Y ZB can be solved 

in 2( 1* 2 3 )O v m m  if we open up some space to store 

temporary results and write  , ; , ,
lmn

X Y ZB  as (29)  

 , ; , , * * *pqr ip il jq jm kr knlmn
pqr i j k

X Y Z X X Y Y Z Z
  

   
  

   B G  (29) 

Sorting Sequence of length 3v can be done in ( 3)O v  

complexity, so if we consider the number of factors 
, ,L M N as constants that always much less than , ,I J K , the 

complexity of these nonnegative tensor factorization are 
( 3)O v . 

IV. Experiment 

A. Preliminary 
We evaluate our models on personalized 

recommendation. We execute the experiments on the 
CiteSeer dataset

a
. The title, authors, references of each 

article is extracted and the title are split into many keywords. 
Next, we clear the data and remove high document 
frequency words from keywords. Then, 101 highest 
frequency words are picked, which is used to scale the 
dataset. Finally, we get 68403 authors, 101 keywords, 62397 

papers , and 638780 data records, with  0.00148‰ sparsity.  
For a certain person(author), given a keyword, recommend 
relevant references.  

In our train and test data, we use binary value to 

represent the occur times, where ( , , )i j k ’s value is 1 if 

author i , keyword j and paper k ’s  combination exists in 

dataset and 0 otherwise. And doing low-rank nonnegative 
tensor factorization on dataset, so as to predict unknown 
values. Rank r  for CP decomposition means N r , and 

rank r  for Tucker decomposition means L M N r   . 

a. http://citeseerx.ist.psu.edu 

We measured average normalized discounted cumulative 
gain(nDCG) as the indices to the results, which is often used 
to measure effectiveness of web search engine algorithms or 
related applications’ ranking quality. Specifically, we use 

@50nDCG to measure the results, where discounted 

cumulative gain(DCG) is defined as in (30) 

                           
( )50

1 2

2 1
@50

log (1 )

rel i

i

DCG
i





                      (30) 

( )rel i  is relevance score in our study, denoted as the 

times of i ’s occurs. In our study, we use binary value where 

( ) 1rel i  if item i exists in the test data and 0 otherwise, 

where we only consider top 50 (top 0.08%) personalized 

recommendation called @50DCG . For the reason that 

different queries has different records in test data (query in 
our study can be seen as a pair of author and keyword), 
DCG should be normalized across queries, we use 

@50nDCG  to measure the final quality. nDCG is comes 

from DCG, as in (31) 

                         
@50

@50
@50

DCG
nDCG

IDCG
                        (31) 

Where @50IDCG  means the maximum possible @50DCG  

in test data. 

So, the average @50nDCG  is the @50nDCG  scores 

averages over all different queries in test data. 

B. Experiment Result 
For the performance and rationality of our experiment, 

we only recommend papers for these pair(author, keyword) 
not occur in train data. Based on the principle above, data 
are randomly split into training data and testing data with an 
4:1 ratio. 

We compare the performance of rank-10 nonnegative 
tensor factorization between different models. Figure 2 
shows the performance of  these models. 

 

Figure 2.  Performance of NTF on Citeseer dataset 

Results show that KL-divergence is more appropriate 
than using LS distance in this paper recommendation.  
Tucker decomposition’s performance get a little better 
results than CP decomposition in our personalized 
recommendation experiments, but not improve much 
compared to CP decomposition. If we consider the 
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performance and time complexity, the nonnegative CP 
factorization model based on is a compromise choice. 

In addition, the higher rank decomposition, the better 
results we get. We compare performance on different ranks 
CP decompositions, shows in Figure 3. We can analyze 
almost all of the available information on rank-40. The 
performance on rank-50 CP_KL decomposition increases  
by 15.3% than on rank-20, but the using rank number is 2.5 
times of rank-20. Rank-20 decomposition is better than 
rank-50 on efficiency. 

 

Figure 3.  Performance of defferent rank CP_KL decompositions 

V. Conclusion and Future Works 

A. Conclusion 
In this paper, we apply nonnegative tensor factorization 

to personalized recommendation, and compare factorization  
on different models and different optimization functions. 
Model using KL-divergence loss function get better results 
in recommendation, especially in nonnegative Tucker 
decomposition. From nonnegative CP_KL decompositions 
between different ranks, it can be seen some lower rank 
decomposition can obtain the considerable performance with 
higher rank decomposition. So in recommendation based on 
tensor factorization, we should select a proper rank that can 
get most of useful information, instead of the higher the 
better efficiency. 

B. Future works 
In our NTF, updating parameters still cost lots of time on 

large-scale tensors, although we optimize the algorithm 
about sparse tensor. Executing tensor factorization on GPU 
with parallel algorithm[20] is one of our task in the future.  

The result matrices of  tensor factorization, can be 
applied to other areas, such cluster and relation learning. 
Explore these matrices’ application is our another target in 
the future. In addition, we will study high dimension 
factorization on small tensor, to open a new idea on multi-
mode data. 
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