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Abstract—This paper presents a smoothing data association 

algorithm for a single target tracking in clutter. The proposed 

algorithm fuses the forward estimates and all the available 

measurement information retrodictions (but not backward 

track estimates) within the smoothing window to obtain the 

smoothed estimates. The measurement information 

retrodictions are obtained using the one-step-backward 

information filter propagation for fast calculation. The 

simulation studies show that the proposed algorithm improves 

the false track discrimination performance with similar root 

mean squared errors as the existing smoothing integrated 

probabilistic data association algorithm. 

Keywords—Smoothing data association, measurement 

information retrodictions, false track discrimination. 

I.  Introduction 
Smoothing [1]–[2] is used to obtain the deferred state 

estimates at scan k with a batch of measurements including 
the future measurements. This can result in a better 
trajectory estimation, as well as false track discrimination 
(FTD) performance because more measurements are 
available at the cost of deferred estimation. These 
improvements are highly effective in applications such as 
"threat assessment," and "situation awareness"[3]. 

We consider the problem of smoothing data association 
for target tracking in clutter. This class of problem has 
received considerable attention in the literature. Rauch-
Tung-Striebel (RTS) [2] smoothing is used in probabilistic 
multi-hypothesis tracking (PMHT) [4]. multi-scan multi-
hypothesis tracking smoothing [5] applies RTS trajectory 
smoothing, ignoring the FTD functionality. Based on 
integrated probabilistic data association (IPDA) [6] 
Augmented-state IPDA (ASIPDA) [7]  calculates the 
probability of target existence as a track quality measure. 
Smoothing IPDA (sIPDA) [8] uses the RTS smoothing 
formulae to calculate smoothing predictions and smoothing 
innovations. sIPDA delivers tangible improvements in the 
FTD capabilities over both IPDA and ASIPDA. But the 
weakness of the algorithm is that the track must be retained 
until the end of the smoothing window to obtain the 
smoothed estimates because all the updated states and 
predicted states within the smoothing window are required 
for the RTS formulas. 
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In this paper, we present a smoothing data association 
algorithm using the measurement information retrodictions 
to overcome the weakness of sIPDA. We name the proposed 
algorithm “smoothing integrated probabilistic data 
association with information retrodictions (sIPDA-IR).” 
sIPDA-IR fuses the forward updated estimates from the 
forward IPDA [6] and the measurement information 
retrodictions within the smoothing window, iteratively to 
obtain the smoothed track state and target existence 
probability (PTE). As the smoothing data association is 
performed from k+1 to N(>k) iteratively, the estimation 
error of the smoothed estimates is reduced. The 
measurement information retrodiction from scan N to scan k 
can be obtained using the one-step-backward information 
filter propagation function. Due to the singularity of the 
inverse covariance, matrix diagonalization in [9] is applied 
to calculate the likelihood functions of the measurement 
information retrodictions for data association. A 
comparative assessment is carried out to verify the FTD 
benefit of the proposed algorithm.  

II. Models 
The usual fundamental assumptions apply: 

1) Infinite sensor resolution. Each measurement has one 
source, either the target or clutter. 

2) A point target. Each target creates zero or one 
detection per measurement time (scan). 

A. Target Model 
The target trajectory state 1kx  is an 1n  vector at scan 

k-1 and propagates as 

1k T k T   x F x v 




where 
TF  denotes the state propagation matrix with 

constant time interval T , and the zero mean and white 

Gaussian plant noise sequence 
Tv  has a known covariance 

matrix 
TQ . Rearranging (1), we obtain 

1 1

1

( ) ( )      

k T k T T

b b

T k T

 

   

 

 

 

x F x F v

F x v





where ( ) 1b

T T



 F F  is the backward state-propagation matrix, 

and the backward plant noise sequence ( )b

Tv  is a zero-mean 

white Gaussian sequence with covariance matrix  

 

( ) 1 T

T
( ) ( )      

b

T T T T

b b

T T T

 

   

  





Q F Q F

F Q F





where T denotes the matrix transpose  
T

T 1 F F . 
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If (2) is extended for N-step-backward propagation, we 

have  

( ) ( )

( ) ( )       

b b

k N N T k N T N T

b b

N T k N T

   

 

 

 

x F x F v

F x v





where ( )b

N Tv is a zero-mean white Gaussian plant noise 

sequence with covariance matrix 

 
T

( ) ( ) ( )b b b

N T N T N T N T   Q F Q F 




where 
N TQ  is the covariance matrix of the plant noise 

N Tv . 

For fast computation, employing (4) and (5) for one-step-

backward propagations is more useful than applying (2) N 

times in the N-scan window, such that 

     
( ) ( )

1
1

N
N i

b b

k N T k T N i T
i

     


 x F x F v 




where the plant noise covariance matrix can be expressed as  

    

    

T
( ) ( ) ( )

1

T
1 1

( ) ( ) ( )

1

       

N
i i

b b b

N T T T T

i

N
i i

b b b

T T T

i

   



 

  











Q F Q F

F Q F

                
(7)

 

A special case is needed to choose the form of 
N TQ  

because (5) should be equivalent to (7). 

B. Sensor 
The target measurement is present at scan k with a 

probability of detection PD and equals 

k k k Z Hx ω 

where H is the linear measurement matrix and kω  is a 

zero-mean white Gaussian sequence with known covariance 

kR , uncorrelated with the sequence 
Tv . At each scan, the 

sensor also returns a random number of clutter 

measurements, which follow a homogeneous Poisson 

distribution. The clutter measurement density ( ) Z  is a 

function of the surveillance space coordinate Z and is 

assumed known. The target measurement is validated with 

probability PG, and the target is detected with probability PD. 

III. Smoothing 

A. Basic Concept of Smoothing 
Assume that a linear system with Gaussian prior is 

described by (1) and (8). Denote with    a sequence of 

measurement times, and with 
 

Z  the sequence of 

corresponding measurement sets. Given no data association 

issues, the pdf of state estimate kx  based on 
 

Z  is 

 
   | |

ˆ( | ) ( ; , )k k k k
p N



 
x Z x x P



where ( ; , )N x m Σ  is the normal distribution of x , with 

mean m and covariance Σ . Replacing    with 1: k , 

1: 1k   , 1:k N , and 1: N  (9) indicates the forward 

estimation pdf, forward prediction pdf, backward prediction 

pdf, and smoothed estimation pdf, respectively. Here, N is 

the last scan of the smoothing window with size 

1sN N k   . 

Define the fuse operation, which fuses independent 

estimates defined by their means m1 and m2 and their 

covariances P1 and P2 (assuming infinite prior state 

covariance): 

   1 1 2 2, Fuse , , ,m P m P m P


by 

 

1 1 1

1 2

1 1

1 1 2 2

  

 

 

 

P P P

m P P m P m


Assume that we have forward estimates and backward 

predictions for scan k with smoothing window: 

| |
ˆ( | ) ( ; , )k

k k k k k kp Nx Z x x P


1:

| 1: | 1:
ˆ( | ) ( ; , )k N

k k k k N k k Np N

 x Z x x P


Smoothing estimates can be obtained using fusing 

forward estimates and backward predictions. 

  |1: |1: | | | 1: | 1:
ˆ ˆ ˆ, Fuse , , ,k N k N k k k k k k N k k N 
   x P x P x P 

B. Retrodictions with Information Filter 
For calculation of smoothed estimates at scan k, both the 

forward estimated state vector 
||

ˆ
kk kkx  and its covariance matrix 

|k kP  and the backward propagated state vector | 1:
ˆ

k k Nx  and 

its covariance matrix | 1:k k NP  are required within the 

smoothing window, as shown in (14). Assume availability of 

a forward estimator applied to scans 1, ,l k , we obtain 

forward estimates | |
ˆ ,k k k kx P . For retrodictions | 1: | 1:

ˆ ,k k N k k N x P , 

we use the information filter. The information filter 
recursively backward propagates and updates the 
information filter state, which for scan l with smoothing 

window , ,l k N , consists of  the information state 

| 1:
ˆ

l l Ny  and the inverse of backward prediction error 

covariance | 1:l l NY , as follows:  

1

| 1: | 1:

| 1: | 1: | 1:
ˆ ˆ

l l N l l N

l l N l l N l l N



 

  





Y P

y Y x


In the backward filtering loop, the information filter 

update function using the measurement lZ is presented as 

follows: 

| : | : U | 1: | 1:
ˆ ˆ, bIF , , , ,l l N l l N l l N l l N l 

      Y y Y y Z R H    (16) 

and defined by 
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T 1

| : | 1:l l N l l N



 Y Y H R H
                          (17) 

T 1

| : | 1:
ˆ ˆ

l l N l l N l



 y y H R Z                           (18) 

where the initial values of 
| 1:N N NY  and 

| 1:
ˆ

N N Ny  are a zero 

matrix and a zero vector, respectively. The information filter 
update in the backward direction is done, followed by 
information filter retrodiction with time interval 

T between scans l and l - 1. 

 

(b) (b)

1| : 1| : P | : | :
ˆ ˆ, bIF , , ,l l N l l N l l N l l N T T   

      Y y Y y F Q
    (19) 

and defined by 

 
T

( ) ( )

1 | :

b b

l T l l N T

 

  A F Y F
                             (20) 

 
1

( )

1| : 1 1

b

l l N l T l



    Y A Q I A
                         (21) 

   
1 T

( ) ( )

1| : 1 | :
ˆ ˆb b

l l N l T T l l N




    y A Q I F y            (22) 

where  

 
1

( ) (b)b


 F F
                              (23) 

It is straightforward to show that, given the invertibility 
of Y , the information filter propagation and update are 
algebraically identical to the Kalman filter propagation and 
update, respectively. 

It is instructive to write the information filter output as a 
combination of contributions of individual measurements. 
Employing an induction method using (16) and (19) 
consecutively, we can derive the following formulas for 
backward  predictions:  

    
11

1 T
( ) ( ) ( )

| 1: , ( )

lk
b b b

k k N s T T l l l k T

l N s k




 

    

 

 
  

 
 Y A Q I F Y F  (24) 

    
11

1 T
( ) ( )

| 1: ,
ˆ ˆ 

lk
b b

k k N s T T l l

l N s k






  

 

 
  

 
 y A Q I F y            (25) 

where 
sA  satisfying (20) is calculated by using 1| 1:s s N Y , 

and ,l lY  and ,
ˆ

l ly  are defined as 

T 1

,l l

Y H R H
                                (26) 

T 1

,
ˆ

l l l

y H R Z                                 (27) 

If ( )b

T Q 0 , both (24) and (25) can be expressed as a 

linear combination of the retrodicted information filter states 
of individual measurements. 

  
1

T
( ) ( )

| 1: ( ) , ( )

k
b b

k k N l k T l l l k T

l N


 

    



Y F Y F

               (28) 

  
1

T
( )

| 1: ( ) ,
ˆ ˆ

k
b

k k N l k T l l

l N




  



y F y

                          (29) 

But if ( )b

T Q 0 , the information filter state can no longer 

be represented as a linear combination form like (28) and 
(29), so for the current scan k, future information 

, ,  1, ,l l l k L Y  is required to calculate the effects of a 

particular measurement ,  L k L N Z , on 
| 1:k k LY  and 

| 1:
ˆ

k k Ly . If we assume the effects of other information are 

negligible for calculating the effect of the measurement 
Lz  

on 
| 1:k k NY  and 

| 1:
ˆ

k k Ny , we can express each of them as a 

linear combination of contributions of individual 
measurements. For the window consisting of scans 

, ,l k N , 

  
1 1

( )

| 1: , ( ) ,

k
b

k k N k l l k T k l

l N

 

  



 Y A Q I A

                 (30) 

  T
1 1

( ) ( )

| 1: , ( ) ( ) ,
ˆ ˆ

k
b b

k k N k l l k T l k T l l

l N

 


    



 y A Q I F y

        (31) 

where ( )

( )

b

l k T Q  satisfies (5) and (7), and  

 
T

( ) ( )

, ( ) , ( )

b b

k l l k T l l l k T

 

   A F Y F
                   (32) 

By using (14), (30), and (31), despite the loss of 
exactness, we can extend the information filter for data 
association for smoothing and FTD in cluttered 
environments. 

IV. sIPDA-IR Algorithm for Cluttered 

Environments 
Smoothing estimates is obtained by fusing the forward 

estimates and backward predictions as shown in (14). 

Without data association issues, the forward estimates are 

obtained using standard estimator such as the Kalman filter 

[2] and backward predictions using (24) and (25) or (30) 

and (31). In cluttered environments, however, data 

association is necessary because the origin of the each 

measurement is uncertain and target measurement is 

detected with a certain probability of detection.  

sIPDA-IR which is the fixed lag smoother calculates the 

smoothed estimates and the PTE by fusing the forward 

estimates obtained by forward IPDA [6] and information 

retrodictions at each scan within the smoothing window 

iteratively. IPDA formulae is omitted and only smoothing 

update is concentrated in this section. Let |1:
ˆ

k lx , |1:k lP and 

|1:
ˆ

k l  denote smoothed state, covariance and PTE at scan k , 

respectively (e.g. forward update estimates for l k , 

smoothed estimates for k l N   within the smoothing 

window , ,l k N ). As scan l  close to scan N , the 

estimation error is decreased due to the smoothing effect. 

In order to fuse one forward IPDA estimates and a 

number of information retrodictions whose origins are 

unknown, data association is required to discriminate target-

originated information from the clutter measurement 

information. For 1, ,l k N  , measurement set 
lz  at scan 

l consists of 
lm number of measurement. Information 
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retrodictions from scan l to scan k of the i-th
 
 measurement  

,l i lZ z  obtained at scan l  are expressed as follows: 

 
1

* ( )

, ( ) ,( )i b

k k l l k T k ll


  Y A Q I A                        
(33) 

 
T1

* ( ) ( )

, ( ) ( ) ,
ˆ ˆ( )i b b i

k k l l k T l k T l ll




    y A Q I F y              
(34) 

where  T 1

, ,
ˆ i

l l l i

y H R Z .  

A. Transformation of Information 
Retrodictions 

The measurement likelihood of the retrodicted 

information state *ˆ ( )i

k ly  is expressed as   

 * * *

|1: 1 |1: 1
ˆ( ) ( ) ; , ( ) /i i i

k k k l k l k Gp l N l l P  Z x P P          
(35) 

where 
GP  is the gating probability and 

 
1

* *( ) ( ) .i i

k kl l


P Y                               
(36) 

The equivalent measurement *( )i

k lZ  is defined as 

 
1

* * *ˆ( ) ( ) ( )i i i

k k kl l l


Z Y y                          
(37) 

if *( )i

k lY  is invertible. However, we cannot achieve matrix 

inversion because the rank of *( )i

k lY  is less than the state 

dimension n.  

By applying the spectral matrix decomposition theory [9], 

the retrodicted information  *( )i

k lY  in (33) can be expressed 

as follows: 

   
T 1

* W * W( ) ( )i i

k kl l


Y H W H                  
(38) 

where  
T

W

1 2, , , p
   H u u u                       

(39) 

 
1

*

1 2( ) diag , , ,i

k pl   


   W                  
(40) 

Here, "diag" means a diagonal matrix. 1 2, , , p      are 

the nonzero eigenvalues of *( )i

k lY , and 1 2, , , p
  u u u  are 

the corresponding orthonormal eigenvectors of *( )i

k lY . 

Finally, the invertible part of *( )i

k lY  can be represented as  

  
1

T
* W * W( ) ( )i i

k kl l


W H Y H                
(41)

 

and the  projection of the equivalent measurement on the 

invertible space can be represented as  

 

* W *

* W *

ˆ ( ) ( )

ˆ         ( ) ( )

i i

k k

i i

k k

l l

l l





w H Z

W H y
                  

(42) 

The projected equivalent measurement *ˆ ( )i

k lw  is used to 

form the measurement likelihood in (35) for data 

association. 

B. Smoothing Innovations for Data 
Association 

The smoothing update starts with the forward update 

estimates  
|

ˆ
k kx , 

|k kP and 
|

ˆ
k k . Let ( )k l be the set of 

information retrodictions in (33) and (34) :  

   * *1* 1*ˆ ˆ( ) ( ), ( ) , , ( ), ( )l lm m

k k k k kl l l l l  
 

y Y y Y       
(43) 

Smoothing estimates is obtained by fusing the estimates 

|1: 1 |1: 1
ˆ ,k l k l x P  and the set of information retrodictions ( )k l , 

iteratively  for 1, ,l k N  : 

|1: |1: |1:

U |1: 1 |1: 1 |1: 1

ˆ ˆ, ,

ˆ ˆ       = sIPDA-IR , , , ( )

k l k l k l

k l k l k l k l



  

  

  

x P

x P
      

(44)
 

Before calculating the likelihood pdf of the information 

retrodiction state *ˆ ( )i

k ly , *ˆ ( )i

k ly  should be expressed in W 

space using (41) and (42) because its inverse covariance 
*( )i

k lY  is singular. Then, the measurement likelihood 

becomes 

 * * W W *

|1: 1 |1: 1
ˆ ˆ( ) ( ); , ( ) /i i i

k k k l k l k Gp l N l l P  w x P W         
(45) 

where the projected estimates are expressed as 

W W

|1: 1 |1: 1
ˆ ˆ

k l k l x H x                                       
(46) 

 
T

W W W

|1: 1 |1: 1k l k l P H P H                           
(47) 

As shown in (46) and (47), smoothed state |1: 1
ˆ

k lx  and its 

covariance  |1: 1k lP  are also expressed in the invertible space 

using the projection matrix W
H .  

The measurement likelihood ratio of the retrodicted 

equivalent measurement set  * *ˆ ˆ( ) ( ),  1, ,i

k k ll l i m w w  at 

scan k satisfies 

 
 

* 1

*

* 1

*

D G D G *
1

ˆ ( ), | ,
( )

ˆ ( ), | ,

( )
         1 P P P P

( )

l

l

k l k

k l

k l k

im

k

i
i k

p l m
l

p l m

p l

l















   

w Z

w Z
                

(48) 

where ,k k  denote target existence and nonexistence, 

respectively. Finally, the smoothed probability of target  

existence  |1:
ˆ | l

k l kP  Z  is  

 

*

|1: 1

|1: *

|1: 1

ˆ( )
ˆ

ˆ1 1 ( )

k k l

k l

k k l

l

l













 
                

(49)
 

Denote with , ( ); 0k i l i   the event that retrodicted 

information state *ˆ ( )i

k ly  is target-originated. Non-detection 

implies i = 0. The data association probability for , ( )k i l  is 

defined as 
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 *

, ,( ) ( ) | , l

k i k i kl P l   Z                    
(50) 

Using Bayes rule, the data association probability 

becomes [3] 

D G

* *
, *

D G *

1 P P ,         0
1

( ) ( )
P P ,     0( )

( )

i
k i k

k i

k

i

l p l
il

l





 


 
 



             
(51) 

C. Update of Smoothed Estimates 

Since the events 
, ( ); 0k i l i   are mutually exclusive and 

exhaustive, using the total probability theorem results in the 

following a posteriori pdf for the target state: 

   *

, ,

0

| , ( ) | ( ), ,
lm

l l

k k k i k k i k

i

p l p l   


x Z x Z       
(52) 

where 

   1

,0| ( ), , | ,l l

k k k k kp l p   x Z x Z                     
(53) 

   

 
 

 

* 1

, 0

* 1

1

* 1

ˆ| ( ), , | ( ), ,

ˆ ( ) | , ,
  | ,

ˆ ( ) | ,

l i l

k k i k k k k

i l

k k k l

k ki l

k k

p l p l

p l
p

p l

  




















x Z x w Z

w x Z
x Z

w Z

          
(54) 

All pdfs in (53), (54) are approximated by Gaussian pdfs: 

   , |1: |1:
ˆ| ( ), , ; ,l i i

k k i k k k l k lp l N  x Z x x P           
(55) 

where for i = 0, 

0 0

|1: |1: |1: 1 |1: 1
ˆ ˆ, ,k l k l k l k l 
      x P x P                                

(56) 

and for i > 0, 

* *

|1: |1: U |1: 1 |1: 1
ˆ ˆ ˆ, IF , , ( ), ( )i i i i

k l k l k l k l k kl l 
      y Y y Y y Y     

(57)
 

where 

*

|1: |1: 1 ( )i i

k l k l k l Y Y Y                                
(58)

 

*

|1: |1: 1
ˆ ˆ ˆ ( )i i

k l k l k l y y y                                 
(59)

 

Here, IFU denotes the standard information filter update. 

|1: 1k lY  and |1: 1
ˆ

k ly  are obtained from |1: 1k lP  and |1: 1
ˆ

k lx  

using (15):  

1

|1: 1 |1: 1k l k l



 Y P                                  
(60)

 

|1: 1 |1: 1 |1: 1
ˆ ˆ

k l k l k l  y Y x                         
(61)

 

where |1: 1k lP  for 1l k   is invertible because |k kP  is non-

singular. After the information update of (57), one can 

obtain |1:

i

k lP  and |1:
ˆ i

k lx  from |1:

i

k lY  and |1:
ˆ i

k ly . Then, the 

Gaussian mixture defined in (52) is approximated with a 

single Gaussian pdf with mean |1:
ˆ

k lx  and covariance |1:k lP :  

   |1: |1:
ˆ| , ; ,l

k k k k l k lp N x Z x x P               
(62) 

where 

*

|1: , |1:

0

ˆ ˆ( )
lm

i

k l k i k l

i

l


x x                                            
(63) 

 *  T T

|1: , |1: |1: |1: |1: |1:

0

ˆ ˆ ˆ ˆ( )
lm

i i i

k l k i k l k l k l k l k l

i

l


  P P x x x x         
(64) 

Calculation of (43)-(64) is continued iteratively until l N .  

Note that the forward process of the sIPDA-IR algorithm 

is operated independently from the smoothed variables. The 

smoothed estimates are only used for filter output, and they 

are not accumulated for the next smoothing window. 

Therefore, the smoothed estimates obtained at each scan do 

not affect the smoothed estimates of other scans. For this 

reason, there is no data incest problem in the proposed 

algorithm. 

V. Simulation Study 
We consider a two-dimensional surveillance scenario. 

The surveillance area is 600 m long (x-axis) and 400 m 

wide (y-axis). The trajectory state consists of the two-

dimensional position and the velocity vectors. The single 

target exists with the initial trajectory state of 

 
T

0 50m 200m 15m/s 0m/sx  and then propagates 

according to (1), with  

3 2

2

2 2 2 23 2

2,2 2 2 22

,  
T T

T T
T

T
q

T

 

 


  
    

    

I I I I
F Q

0 I I I
       

(65) 

where 1sT   denotes the measurement (scan) interval, 

nI denotes the n-dimensional identity matrix, 
,m nO  denotes 

the m-by-n zero matrix, and q is 0.1 m
2
/s

3
. 

A linear sensor provides the target position measurements 

with detection probability 0.9 and measurement covariance 
2

225 mR I . The clutter measurement density is 10
-4 

m
2
. 

Each simulation run consists of 36 scans, and each 

experiment averages the outcomes from 1000 runs. New 

tracks are initialized every scan using all possible 

measurement pairs in consecutive scans (two-point 

differencing) [3] with the maximum velocity constraint, 25 

m/s. Roughly 150,000 (4.2 per scan) new tracks are 

initialized per experiment.  

We compare the IPDA, the sIPDA, and the sIPDA-IR 

algorithms. The smoothing algorithms sIPDA and sIPDA-

IR are implemented using a 5-scan smoothing window. For 

example, when we calculate smoothed estimates at scan 2, 

the range of the smoothing window is from scan 2 to scan 6. 

In the smoothing algorithms, tracks are terminated if 

either forward update PTE or smoothed update PTE falls 

below a predetermined termination threshold. Tracks are 

confirmed if the smoothed update PTE exceeds a 

predetermined confirmation threshold. IPDA uses the 

updated PTE to terminate and confirm tracks. The FTD 

parameters are tuned to deliver 30  confirmed false tracks 

for each algorithm. Figures 1 and 2 show the confirmed true 

track (CTT) rate and root mean square (RMS) errors of CTT 

following a target. The CTT rate increases toward 100%,  
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Figure 1.  Confirmed true track rates 

 

Figure 2.  Root mean square errors 

and among them, sIPDA-IR shows the fastest response. 

Because the sIPDA algorithm is an RTS-based smoother, 

the smoothed estimates can be obtained if the track is 

retained until scan N (which is the last scan of the 

smoothing window).  If not, sIPDA does not have a chance 

to calculate the smoothed estimates. However, our proposed 

algorithm does not need updated estimates from k+1 to N 

for smoothing updates, but it needs retrodictions of 

information gathered in the window to scan k. This results 

in a fast increase of the CTT rate. The RMS errors of the 

proposed algorithm are less than those of IPDA and similar 

to sIPDA. But the errors may increase for target tracking 

with high maneuvering indexes due to the approximation 

made in (30) and (31).  

VI. Conclusions 
The smoothing data association algorithms of estimation 

theory have been used to improve FTD capabilities and 

reduce estimation errors, incurring the expense of deferred 

estimation. In this paper, we present the fixed-lag 

smoothing data association algorithm, sIPDA-IR, for target 

tracking in clutter. The proposed algorithm fuses forward 

estimates and measurement information retrodictions within 

the smoothing window, recursively, until the smoothed 

estimates at the current scan k are obtained. The simulation 

studies verify that the proposed sIPDA-IR algorithm shows 

better FTD performance than both sIPDA and IPDA, and 

similar RMS errors to sIPDA.  
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