
 

18 

Proc. of The Third Intl. Conf. On Advances in Applied Science and Environmental Technology - ASET 2015 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-084-2  doi: 10.15224/ 978-1-63248-084-2-33 

 

Double Inertia Weight-Based Particle Swarm 

Optimization 
[Yu-Huei Cheng*, Che-Nan Kuo, and Ching-Ming Lai] 

 
Abstract—Particle swarm optimization (PSO) is a well-known 

and popular swarm intelligence algorithm. The inertia weight of 

a PSO plays the crucial role in the ability of exploration and 

exploitation. Many strategies for adapting the inertia weight of 

PSO have been proposed. In this study, we use two inertia 

weights to improve the global and local search of PSO. Nine 

benchmark functions with 10 dimensions for unimodal functions, 

multimodal functions with many local optima, and multimodal 

functions with a few local optima is used as the test functions. We 

compare two inertia weight PSOs with the proposed method. The 

results show the proposed method is useful for improve the 

search ability of PSO. 

Keywords—benchmark functions, double inertia weight, 

particle swarm optimization (PSO) 

I.  Introduction 
Particle swarm optimization (PSO) is a popular 

population-based algorithm [1], and many real-world 
problems are effectively solved by it. For examples, EMG 
(electromyogram) signal classification [2], image filter [3], 
decoupling control for temperature of reheating furnace [4], 
harmonic filters [5], Ultrawideband (UWB) Antenna Synthesis 
[6], flow shop scheduling [7], learning to play games [8] and 
so on. In PSOs, how the local and global search is controlled 
will influence performance on finding the optimal solution 
directly. In many variants of the PSOs, the inertia weight is 
considered significant to adjust their search ability with 
exploration and exploitation. The inertia weight can balance 
the global and local search. A large inertia weight facilitates a 
global search while a small inertia weight facilitates a local 
search [9]. 
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In the past, several manners for associating with the inertia 
weight of PSO were proposed. The fixed inertia weight PSO 
[10] is first introduced into the original particle swarm 
optimizer by Shi and Eberhart. They performed different 
chosen inertia weight to illustrate the impact of this parameter 
on the performance of PSO. And then, Shi and Eberhart use 
linearly decreasing inertia weight PSO [11], which decreases 
the inertia weight from a relatively large value to a small value 
through iterations. It tends to own more global search ability at 
the beginning of iterations and more local search ability 
around the end of iterations. However, the fixed or linearly 
decreasing inertia weight PSO is not very effective for 
tracking nonlinear dynamic systems most real-world 
applications. 

In this study, we propose two inertia weights to improve 
the global and local search of PSO. The above two inertia 
weight controlled PSOs are also performed. The three methods 
have been tested and comparisons each other on nine 
benchmark functions with 10 dimensions for unimodal 
functions, multimodal functions with many local optima, and 
multimodal functions with a few local optima. 

II. Methods 
The PSO was inspired by the social behaviors of a bird 

flock or fish school. The PSO first generates a population of 
random solutions called particles. Each particle has its own 
velocity and position. Following that, it searches for optimal 
solution by updating generations through the update equations 
for the velocities and the positions of particles. Before 
updating the velocities and the positions, all particles are 
evaluated by an objective function and compared with the 
previous positions to gain the personal best positions, and 
compared with each other to gain the global best position. In 
each generation, the current velocities will be updated 
according to the previous positions, the personal best positions 
and the global best position. Each particle then moves to a new 
position according to its current velocity and its previous 
position. The personal and global best positions particle is 
always be improved by generation to generation, and thus lead 
other particles accelerates in the direction to move. 

A. Original PSO 
The original PSO was proposed by Eberhart and Kennedy 

[1]. Let N is dimensions for an optimization problem for 
search space. Four characteristics are described as follows: 

The position of the ith particle is represented as Xi = (xi1, 
xi2, ... , xiN). The personal best position of the ith particle is 
represented as pbesti = (pil, pi2, ... , piN). The global best 
position found from all the particles is represented as gbest = 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1304848&contentType=Journals+%26+Magazines&refinements%3D4291944246%26searchField%3DSearch_All%26queryText%3DPSO


 

19 

Proc. of The Third Intl. Conf. On Advances in Applied Science and Environmental Technology - ASET 2015 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-084-2  doi: 10.15224/ 978-1-63248-084-2-33 

 

(gl, g2, ... , gN). The velocity of the ith particle is represented as 
Vi = (vil, vi2, ... , viN). The value of velocity Vi is restricted to the 

range of [−Vmax, Vmax] to prevent particles from moving out of 

the search space. 

In original PSO, each particle in the swarm is iteratively 
updated according to the aforementioned characteristics. 
Assume the objective function of an optimization problem is 
defined as objective(Xi) and it is minimized. 

The personal best position of each particle is found by  
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where i is a serial number of the particle; g is the current 
generation; pbesti(g) is the personal best position of the ith 
particle in the current generation; Xi (g) represents the position 
of the ith particle in the current generation; objective(Xi(g)) is 
the objective function for getting objective value of a particle 
Xi(g); pbesti(g+1) is the personal best position of the ith 
particle in the next generation. 

The global best position is found by 
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where g is the current generation; pbestk(g+1) is a position 
with the minimum objective value; 
min( ))1(objective(  gpbest ) represents a function for getting 

the minimum objective value of pbesti(g+1) from all 
pbest(g+1) in the next generation; gbest(g+1) is the global best 
position found from all the particles in the next generation. 

The equation for the new velocity of every particle is 
defined as 
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where i is a serial number of the particle; g is the current 
generation; c1 and c2 denote the acceleration coefficients; r1i 

(g) and r2i (g) are the uniform random values of the ith particle 
in the range (0, 1) in the current generation; Vi (g) is the 
velocity of the ith particle in the current generation; pbesti(g) 
is the personal best position of the ith particle in the current 
generation; gbest(g) is the global best position found from all 
the particles in the current generation; Xi (g) represents the 
position of the ith particle in the current generation; Vi (g+1) is 
the velocity of the ith particle in the next generation. 

The current position of each particle is updated using 

)1()()1(  gVgXgX iii                           (4) 

where Xi (g) represents the position of the ith particle in the 
current generation; Vi (g+1) is the velocity of the ith particle in 
the next generation; Xi (g+1) represents the position of the ith 
particle in the next generation. 

B. Fixed inertia weight PSO 
The original PSO introduces a parameter called inertia 

weight (w) to the updating equation of the velocity [10]. The 
influence of using fixed inertia weight has been estimated. The 
fixed inertia weight was considered to be chosen a good area 
on the range [0.9, 1.2] [10]. In this study, we use the 
abbreviation of “FWPSO” to represent the fixed inertia weight 
PSO. The new updating equation of the velocity is given as 
follows: 
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where w is inertia weight; the other variables and functions are 
the same as above-mentioned. 

C. Linearly decreasing inertia weight 
PSO 
A large inertia weight facilitates a global search while a 

small inertia weight facilitates a local search. Linearly 
decreasing inertia weight PSO (LDWPSO) by linearly 
decreasing the inertia weight from a relatively large value 
(wmax = 0.9) to a small value (wmin = 0.4) through iterations 
(i.e., generations) to control the global search and local search. 
It had been reported to be better than the fixed inertia weight 
PSO on the benchmark problem of Schaffer’s F6 function [11] 
and four non-linear testing functions [9]. The decreasing 
inertia weight is calculated as 

g
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where wmax is the maximum inertia weight value; wmin is the 
minimum inertia weight value; G is the maximum number of 
generations; g is the current generation. 

D. Double inertia weight PSO 
In order to control the global and local search, we propose 

double inertia weight PSO (DWPSO) here. The DWPSO use 
two inertia weights, one is focused on the global search (wglobal 
= 0.9), and the other is focused on the local search (wlocal = 
0.4). At the beginning iterations, the large inertia weight is 
enabled for global search, and at the ending iterations, the 
small inertia weight is enabled for local search. The double 
inertia weight is set according to 
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where wglobal means the large inertia weight for global search; 
wglobal means the small inertia weight for local search; g is the 
current generation; G is the maximum number of the preset 
generations; w(g+1) represents the inertia weight in the next 
generation. 
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III. Benchmark functions 
Nine benchmark functions including unimodal and 

multimodal problems was used for evaluating the inertia 
weight PSOs. Table I lists the nine benchmark functions and 
their modality, global optimum, search space and initial 
ranges. These functions are divided into three parts, i.e., A. 
unimodal functions, B. multimodal functions with many local 
optima, and C. multimodal functions with a few local optima. 
They are described below. 

TABLE I.  MODALITY, GLOBAL OPTIMUM, SEARCH SPACE AND INITIAL 

RANGES OF NINE TEST FUNCTIONS 

Modality Function f 
Global 

optimum 

Search 

space 

Initial 

range 

U
n

im
o
d

a
l 

f1 Hyperellipsoid 0 [-1.0, 1.0]N [-1.0, 1.0]N 

f2 Quartic 0 [-1.28, 1.28]N [-1.28, 1.28]N 

f3 Step 0 [-100.0, 100.0]N [-100.0, 50.0]N 

M
u

lt
im

o
d

a
l 

w
it

h
 m

a
n

y
 

lo
ca

l 
o

p
ti

m
a
 f4 Griewank 0 [-600.0, 600.0]N [-600.0, 300.0]N 

f5 Levy 0 [-10.0, 10.0]N [-10.0, 10.0]N 

f6 Schaffer f6 0 [-100.0, 100.0]N [-100.0, 50.0]N 

M
u

lt
im

o
d

a
l 

w
it

h
 a

 f
ew

 

lo
ca

l 
o

p
ti

m
a
 f7 Branin 0.398 [-5.0, 15.0]N [-5.0, 15.0]N 

f8 Goldstein-price 0 [-2.0, 2.0]N [-2.0, 2.0]N 

f9 
Six-hump 

camel-back 
-1.0316285 [-5.0, 5.0]N [-5.0, 5.0]N 

Note: N is the size of dimensions. 

A. Unimodal functions 
Unimodal functions are rather easy to optimize. In this 

study, f1 ~ f3 are unimodal functions, they are listed below. 

(1) f1 - Hyperellipsoid 
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(2) f2 - Quartic function 
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(3) f3 - Step function 
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B. Multimodal functions with many 
local optima 
Functions f4 ~ f6 are multimodal functions with many local 

optima. They look to be the most difficult category of 

problems for many optimization methods. These functions are 
listed as follows. 

(4) f4 - Griewank’s function 
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(5) f5 - Levy 
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(6) f6 - Schaffer f6 
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C. Multimodal functions with a few 
local optima 

Functions f7 ~ f9 are as well as multimodal functions, but they 
only comprise a few local optima. They are listed as follows. 

(7) f7 - Branin function 
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(8) f8 - Goldstein-Price function 
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(9) f9 - Six-hump Camel-back 
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IV. Experiments 
We compared the proposed inertia weight PSO to two 

inertia weight PSOs on the nine benchmark functions which 
include unimodal functions, multimodal functions with many 
local optima, and multimodal functions with a few local 
optima in 10 dimensions, i.e., N is set to 10. The three PSOs 
were implemented in JAVA. The experiments were executed 
on Pentium 4 CPU 3.4 GHz with 1GB of RAM on Microsoft 
Windows XP SP3 professional operating system. On the 
boundary process of these PSOs, we use bound terminal 
process, i.e., when the particles are over shot, the positions of 
the particles will be reset to the maximum limit of the search 
range. 

A. Parameter Settings 
Five main parameters were set for the PSO-based methods, 

i,e., the number of iterations (10000), the particle swarm size 
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(10), the different inertia weight w setting approaches, and the 
constriction factors c1 and c2 (2 and 2). Each method was run 
30 times and the results for their mean values, standard 
deviation, and average running time were calculated. 

B. Experimental results 
Table II presents the mean, standard deviation, and average 

running time of 30 runs for the three inertia weight PSOs on 
the nine benchmark functions with 10 dimensions in the 
unimodal functions, the multimodal functions with many local 
optima, and the multimodal functions with a few local optima. 
Because only the inertia weight is handled, the results of these 
PSOs are approximative. 

On the unimodal functions, for f1, the FWPSO performed 
the worst result for mean value and but the best average run 
time; the LDWPSO performed the worst result for variance, 
standard deviation and average run time; the proposed 
DWPSO performed the best result for mean value, variance, 
and standard deviation. For f2, the FWPSO performed the 
worst result for mean value, variance, standard deviation and 
average run time; the LDWPSO performed the secondary 
result for mean value, variance, standard deviation and 
average run time; the proposed DWPSO performed the best 
result for mean value, variance, standard deviation and 
average run time. For f3, the three methods performed the 
perfect result for mean value, variance and standard deviation. 
The LDWPSO had the better average run time than the 
FWPSO and the proposed DWPSO. 

On the multimodal functions with many local optima, for 
f4, the FWPSO performed the worst result for variance and 
standard deviation, but the best average run time; the 
LDWPSO performed the secondary result for mean value, 
variance, standard deviation, and average run time; the 
proposed DWPSO performed the better mean value, variance 
and standard deviation. For f5, the three methods performed 
the same result for mean value, variance and standard 
deviation. The proposed DWPSO had the better average run 
time than the FWPSO and LDWPSO. For f6, the FWPSO 
performed the best result for mean value, variance and 
standard deviation; the LDWPSO performed the worst result 
for mean value, variance and standard deviation; the proposed 
DWPSO performed the secondary result for mean value, 
variance and standard deviation, and had the best average run 
time. 

On the multimodal functions with a few local optima, for 
f7, the three methods had the same result for mean value. The 
FWPSO performed the worst result for variance and standard 
deviation, but the best average run time. The LDWPSO and 
the proposed DWPSO in addition to the same mean value, 
they had the same result for variance and standard deviation. 
For f8, the FWPSO performed the best result for variance and 
standard deviation. The LDWPSO performed the same mean 
value as the FWPSO, and the average run time is the worst 
one. The DWPSO performed the best mean value and the 
average run time. 

 

TABLE II.  COMPARISONS OF SEARCH RESULTS FOR THE MEAN, 
VARIATION, STANDARD DEVIATION, AND AVERAGE RUN TIME IN 30 RUNS FOR 

THE THREE INERTIA WEIGHT PSOS ON THE NINE BENCHMARK FUNCTIONS 

WITH 10 DIMENSIONS FOR UNIMODAL FUNCTIONS, MULTIMODAL FUNCTIONS 

WITH MANY LOCAL OPTIMA, AND MULTIMODAL FUNCTIONS WITH A FEW 

LOCAL OPTIMA. 

Functions Result FWPSO LDWPSO DWPSO 

f1 

Mean 6.84E+00 3.77E+00 3.30E+00 

Var. 1.69E+01 1.77E+01 1.51E+01 

Std. dev. 4.11E+00 4.21E+00 3.89E+00 

Avg. run time (ms) 1106 1421 1250 

f2 

Mean 3.20E+00 1.90E+00 1.76E+00 

Var. 1.06E+00 3.34E-01 5.42E-02 

Std. dev. 1.03E+00 5.78E-01 2.33E-01 

Avg. run time (ms) 1534 1533 1523 

f3 

Mean 0 0 0 

Var. 0 0 0 

Std. dev. 0 0 0 

Avg. run time (ms) 53 31 61 

f4 

Mean 3.59E+00 3.66E+00 2.66E+00 

Var. 1.66E+01 7.51E+00 3.64E+00 

Std. dev. 4.07E+00 2.74E+00 1.91E+00 

Avg. run time (ms) 1179 1248 1218 

f5 

Mean 4.71E-32 4.71E-32 4.71E-32 

Var. 1.12E-93 1.12E-93 1.12E-93 

Std. dev. 3.34E-47 3.34E-47 3.34E-47 

Avg. run time (ms) 1383 1390 1358 

f6 

Mean 3.89E-03 2.11E-02 4.53E-03 

Var. 2.34E-05 2.08E-03 2.43E-05 

Std. dev. 4.84E-03 4.57E-02 4.93E-03 

Avg. run time (ms) 1682 1304 1176 

f7 

Mean 3.98E-01 3.98E-01 3.98E-01 

Var. 1.68E-12 1.28E-32 1.28E-32 

Std. dev. 1.29E-06 1.13E-16 1.13E-16 

Avg. run time (ms) 927 991 935 

f8 

Mean -5.74E+05 -5.74E+05 -5.73E+05 

Var. 5.99E+06 6.81E+06 7.12E+06 

Std. dev. 2.45E+03 2.61E+03 2.67E+03 

Avg. run time (ms) 947 1084 743 

f9 

Mean -1.03E+00 -1.03E+00 -1.03E+00 

Var. 3.07E-11 4.59E-31 4.59E-31 

Std. dev. 5.54E-06 6.78E-16 6.78E-16 

Avg. run time (ms) 1031 1122 1029 

Note: Var. is the abbreviation of “variance”; std. dev. is the abbreviation of 
“standard deviation”; Avg. is the abbreviation of “average”. The bold 
represents the best results. 
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For f9, the three methods had the same mean value. The 
FWPSO performed the worst result for variance, standard 
deviation; the LDWPSO and the proposed DWPSO performed 
the same variance and standard deviation. The proposed 
DWPSO had the best average run time. 

V. Converging conditions 
In order to observe the conditions for their convergence, 

the iterative process is shown in the study. Figures 1 to 3 
respectively shows the charts for unimodal functions, 
multimodal functions with many local optima, and multimodal 
functions with a few local optima. The chart for unimodal 
functions as shown in Fig. 1. For the Hyperellipsoid and the 
Quartic functions, all the three methods did not converge on 
the optimal solution. The proposed DWPSO converged rapidly 
than the other methods in Hyperellipsoid function. The 
proposed DWPSO converged in the better solution than the 
other methods in Quartic function when the iterations reached 
to 10000. Furthermore, the chart show Step function was 
converged rapidly by all the three methods and reached the 
optimal solution.  

The chart for multimodal functions with many local optima 
as shown in Fig. 2. For the Griewank, Levy, and Schaffer f6 
functions, all the three methods did not converge on the 
optimal solution. The proposed DWPSO converged in the 
better solution than the other methods in Griewank and Levy 
functions when the iterations reached to 10000. However, for 
the Schaffer f6 function, the FWPSO converged in the better 
solution than the other methods when the iterations reached to 
10000. 

The chart for multimodal functions with a few local optima 
as shown in Fig. 3. The converged conditions were similar 
among the three methods for Branin, Goldstein-price, and Six-
hump camel-back functions. From the Table II, we observe the 
proposed DWPSO generated little better solutions for Branin, 
Goldstein-price, and Six-hump camel-back functions than the 
other methods when the iterations reached to 10000. 

From these results, for the most converged conditions, the 
proposed DWPSO yield better solutions than the FWPSO and 
LDWPSO methods on the used unimodal functions, 
multimodal functions with many local optima, and multimodal 
functions with a few local optima. 

VI. Conclusion 
In the study, we implement three inertia weight PSOs and 

test them on nine benchmark functions for unimodal functions, 
multimodal functions with many local optima, and multimodal 
functions with a few local optima. The DWPSO is proposed 
based on two inertia weights for the improvement of the global 
and local search of PSO. The results show the two inertia 
weights are helpful for promoting the search ability in of PSO. 
In the future, we will test the DWPSO method in more 
benchmark functions to observe its search ability and propose 
further process for the DWPSO. 
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(a) f1: Hyperellipsoid chart for iterations of 10000 

 
(b) f2: Quartic chart for iterations of 10000 

 
(c) f3: Step chart for iterations of 10000 

Figure 1.  The chart for unimodal functions in f1 ~ f3. The x-axis is the 

iteration and the y-axis is the search value. 
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(a) f4: Griewank chart for iterations of 10000 

 
(b) f5: Levy chart for iterations of 10000 

 
(c) f6: Schaffer f6 chart for iterations of 10000 

Figure 2.  The chart for multimodal functions with many local optima in f4 ~ 

f6. The x-axis is the iteration and the y-axis is the search value. 

 
(a) f7: Branin chart for iterations of 10000 

 
(b) f8: Goldstein-price chart for iterations of 10000 

 
(c) f9: Six-hump camel-back chart for iterations of 10000 

Figure 3.  The chart for multimodal functions with a few local optima in f7 ~ 

f9. The x-axis is the iteration and the y-axis is the search value. 
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