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Abstract—PID controllers have been successfully used in 

versatile applications, especially with the aid of available mature 

tuning methods such as the Ziegler-Nichols method. Recently, 

fractional order PID controllers were proposed after a series of 

researches on fractional calculus. It is intriguing for the flexibility 

of the adoption of fractional order which is free from the limit of 

integer order. This paper studied the fractional order PID 

controller of different fraction order applied in a DC motor system. 

The simulation results show that the fractional order PID 

controllers are promising compared to the integer PID controllers. 
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I.  Introduction 
The application using fractional calculus initiated in early 

19th century [1]. Abel used fractional calculus to formulate 
and solve the “tautochrone” problem. Later on, Liouville, 
Heaviside and other mathematicians derived mathematical 
models for some systems and solved those problems with the 
fractional calculus. These systems included potential theory, 
heat equation, and notch design of a dam. Then the research 
was dormant for quite a while until the late 20th century. 
There were consecutively three International Conferences on 
Fractional Calculus held in University of New Haven in 
Connecticut, USA, Strathclyde University in Scotland, 
England and Nihon University in Tokyo, Japan. Researchers 
presented miscellaneous fractional order systems, including 
rheology, diffusion, electromagnetic theory, statistics, 
probability, viscoelasticity and electrochemistry of corrosion. 

Commonly-used PID controller uses the linear 
combination of the input value, and its derivative and integral 
as the output. Its simplicity, effectiveness and robustness 
makes it popular in industrial applications. In addition, the 
parameters tuning methods, such as the Ziegler-Nichols 
method, which require only time response without parametric 
system models make the PID controllers even more 
convenient and effective.  

Compared to conventional (integer) PID controllers, 
though fractional order PID controllers seem to be suitable for 
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intrinsically fractional order dynamic systems, they do not 
receive much attention until recent years due to its complexity 
and lack of parameters tuning algorithms. 

Monje et al [2] proposed to optimize parameters of 
fractional order PID controllers by using gain crossover 
frequency, phase margin and other conditions in 2004. Yet, 
this method is not well developed. The initial guess must be 
fairly good so the parameters may converge to optimum. 
Valério and Sá da Costa [3] proposed a parameters tuning 
algorithm for fractional order PID controllers adhering to the 
concept of the Ziegler-Nichols method in 2005. However, it’s 
useful only for S-shape step response with time delay, not 
suitable for system response without time delay. 

This paper studied the feasibility of applying the PI
λ
D

μ 

(fractional PID, ,0  ) controller to a DC motor system. 

The Ziegler-Nichols method provides a clue for determining 
the parameters of the PI

λ
D

μ
 controller as there is no mature 

tuning method yet. Several parameter sets were tried for 
comparsion. It is desired to find useful PI

λ
D

μ
 controller for the 

specified system. 

This paper consists of the following sections: section I is 
the introduction, section II presents the mathematic model of a 
DC motor system, section III briefly introduces the fractional 
calculus, and fractional order Laplace transform, section IV 
gives the simulation results, and section V is the conclusion. 

II. DC Motor Model 
A DC motor model is used as an example (Fig. 1). The 

armature voltage is e(t), and the current through armature is 
i(t). The governing electrical equation is  

)()(
)(

)( tetiR
dt

tdi
Lte baa   (1) 

where La and Ra are the inductance and resistance of the 

armature, respectively. And )(teb  is the back e.m.f. of the DC 

motor, which is proportional to the angular velocity  . Let 

the back e.m.f. constant be Kb, then  

dt

td
KtKte bbb

)(
)()(


   (2) 

 
Figure 1.  DC Motor 
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Meanwhile, assume the generated motor torque and the 
load are τm and τl, respectively. The rotational inertia and the 
rotational damping coefficient of the motor are J and B, 
respectively. Then the governing mechanical equation can be 
expressed as 

)(
)()(

)(
2

2

t
dt

td
B

dt

td
Jt im 


 

 (3) 

Since the motor’s output torque is proportional to the input 
current, it is usually described by the following equation  

)()( tiKt tm   

 (4) 
where Kt is the torque constant. When the SI system is used, 
Kb equals Kt. 

The DC motor system can be represented by the block 
diagram shown in Fig. 2. Hence, the transfer function of the 
DC motor using the Laplace transform is  

 
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if the rotation angle is chosen as output. 
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if the angular velocity is chosen as output.  

Using the motor parameters in Table I, the transfer 
function is 

4427 10673.510848.110378.3

01826.0
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III. Fractional Order Controller 
3.1 Fractional Calculus 

Fractional calculus operator is defined as follows [4]:  

TABLE I.   DC MOTOR PARAMETERS 

Physical quantity Symbol (unit) value 

Armature inductance aL (H) 4.6909×10-3 

Armature resistance aR (Ω) 2.5604 

Back e.m.f. constant bK (V /(rad/s)) 1.8259×10-2 

Torque constant tK (N‧ m/A) 1.8259×10-2 

Damping coefficient B (N‧m /(rad/s)) 9.1358×10-5 

Rotational inertia J (kg‧m
2
) 7.2019×10-5 

 

Figure 2.  Block diagram of a DC motor system 
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where t  and a  are the upper limit and lower limit of the 

integral, respectively. And   is the fractional order. If 0 , 


ta D  is a fractional order integral, and 

ta D  is a fractional 

order differential. The most famous fractional order integral 
definition is the Riemann-Liouville definition, which is 
expressed as follows [4]:  
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where  





0

1)( dyeyx yx  (9) 

is the well-known Euler’s gamma function. While the most 
used fractional order differential definition is the Grünwald-
Letnikov definition, which is expressed as follows [4]: 
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Since Laplace transform is used to solve engineering 
problems described by ordinary differential equations, it can 
be used in fractional order differointegral equations as well.  

The Laplace transform according to the Riemann-Liouville 
definition is  
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when   nn  1  

If 1,2,1,0,0)0(1

0  njfD j

t   (13) 

then   )()(0 sFstfDL t

   (14) 

Obviously, the order of the Laplace operator s is a fraction 
in fractional order differointegral. 

 Oustalop [5] proposed to apply fractional order controllers 
to dynamic systems. He named the non-integer robust 
controller he developed as “Commande Robuste d’Ordre Non 
Entier” (CRONE). The implementation was described in his 
book, and various application examples were provided 
therewith. He later introduced another fractional order PID 
controller, or the PI

λ
D

μ
 controller. The transfer function of 

such a controller takes the following form  
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where PK , ,IK , and ,DK  are the proportional gain, the 

fractional order integral gain, and the fractional order 
derivative gain, respectively. 

And the control effort )(tu  in time domain can be 

expressed as  

)()()()( ,, teDKteDKteKtu DIP







    (16) 

When 1   in equation (3-7), )(sGC  is an integer 

PID controller; 0,1   , )(sGC  a PD controller; and 

1,0   , )(sGC  a PI controller; and 0  , a P 

controller. Without limiting λ and μ to be 0 or 1, fractional 
order offers more flexibility in the controller design.  

The fractional order differentiator rs  can be expressed as 

 1 zws  by generating functions. Choosing the Tustin 

generating function, the fractional differointegral can be 
discretized as [6] 
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Expand 

r

z

z
















1

1

1

1
 in Taylor series as follows:  

   





















































553442

33221

1

1

15

4

3

4

5

2

3

2

3

4

3

4

3

2
221

1

1

zrrrzrr

zrrzrzr

z

z
r

 (18) 

Therefore, 
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where the numerator  rzAn ,1  and the denominator 

 rzAn  ,1  can be found by the following iterations.  
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where 





evenis,0

oddis,/

n

nnr
cn   

The accuracy of the approximation is determined by n. 

 

3.2 Controller Parameters 

Since the integer PID controller can be considered as a 
special case of  the PI

λ
D

μ
 controller, we can use the parameters 

determined by the Ziegler-Nichols method as a reference to 
obtain proper parameters of the PI

λ
D

μ 
controller. 

According to the Ziegler-Nichols method, Ku and Tu at 
fixed amplitude oscillation should be found first. The Routh-
Hurwitz criterion [7] was used to find the value Ku. The 
characteristic equation of the motor system is  

0)()( 23  utbtaaaa KKsKKBRsBLJRJsL  (21) 

Hence, the Routh-Hurwitz table was established. 

3s  JLa  bta KKBR   

2s  )( aa BLJR   ut KK  

1s  1b  0 

0s  ut KK  0 

 

where  
  

aa

utaaabta

BLJR

KJKLBLJRKKBR
b




1  

The system becomes unstable when  01 b . The critical 

condition 01 b  yields uK = 16.998 at resonance. And the 

simulated step response is shown in Fig. 3.  

The oscillation period of the controlled system in Fig. 3 is 
Tu = 0.15326. The PID parameters determined by the Ziegler-

Nichols method are uP KK 6.0 = 10.1988, uPI TKK /2 = 

133.09434, and 8/uPD TKK  = 0.19538. 
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Figure 3.  Step response and control input at K = 16.998. 
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IV. Simulation Results 
The proportional gain, integral gain and derivative gain 

found using the Ziegler-Nichols method are used in the PID 
controller and served as a basis for determining the parameters 
of the PI

λ
D

μ 
controllers in this paper. A one-radian step input 

was used to compare the performance of the controllers. For 
the standard PID controller, KP = 10.2, KI = 133, and KD = 
0.19. The step response of integer PID

 
controller and the 

corresponding control input are shown in Fig. 4. The 
maximum overshoot was about 0.825 rad., and the output 
settled to ±5% window at t = 0.76 s. 

First, λ = μ = 0.8 (close to 1) was tried. The adopted 
parameters were KP = 10.2, KI,λ = 80, and KD,μ = 0.43. The step 
response of the PI

λ
D

μ 
controller with λ = μ = 0.8 and the 

corresponding control input are shown in Fig. 5. The 
maximum overshoot was about 0.79 rad., and the settling time 
was about 0.675 s. The response didn’t differ much from the 
integer PID controller’s. Then λ = μ = 0.5 was used for the 
PI

λ
D

μ 
controller. With KP = 10.2, KI,λ = 36.84, and KD,μ = 1.4, 

the step response of the PI
λ
D

μ 
controller with λ = μ = 0.5 and 

the corresponding control input are shown in Fig. 6. The 
maximum overshoot was about 0.93 rad., and the settling time 
was about 2.725 s. The response showed that its performance 
was worse than the integer PID controller’s. Since larger 
derivative gain might effectively reduce the oscillation 
amplitude for integer PID controller, the concept should apply 
to fractional order PID controller as well. By setting KD,μ = 2.8 
without changing KP and KI,λ, the step response and the 
corresponding control input are shown in Fig. 7. The 
maximum overshoot was about 0.8 rad., and the settling time 
was about 0.685 s. And the performance was better than the 
integer PID controller’s, which verified the assumption about 
the fractional derivative gain. 

Furthermore, KD,μ = 7 was chosen without changing KP and 
KI,λ for PI

λ
D

μ 
controller with λ = μ = 0.5. The step response 

and the corresponding control input are shown in Fig. 8. The 
maximum overshoot was about 0.66 rad., and the settling time 
was about 0.272 s. The performance of this controller was far 
better than the integer PID controller’s performance with the 
empirical gains. Because, the empirical gains obtained by the 
Ziegler-Nichols method might not be optimal for the integer 
PID controller, more vigorous researches may be conducted to 
judge the condition which controller prevails. At this point, at 
least the PI

λ
D

μ 
controller may work better if the gains were 

appropriately chosen. 
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Figure 4.  Step response and control input under PID control. 
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Figure 5.  Step response and control input under PIλDμ control (λ=μ=0.8) 
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Figure 6.  Step response and control input under PIλDμ control (λ=μ=0.5) 

(λ = μ = 0.5, KD,μ = 1.4) 
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Figure 7.  Step response and control input under PIλDμ control 

 (λ = μ = 0.5, KD,μ = 2.8) 
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Figure 8.  Step response and control input under PIλDμ control  

(λ = μ = 0.5, KD,μ = 7) 

V. Conclusions 
Different fraction numbers were used in PI

λ
D

μ
 controllers 

for comparison with (integer) PID controller in the case of a 

DC motor system. The simulation results showed that as  and 

 approached integer 1, the fractional order PID controller 
worked like a PID controller as expected. In addition, the case 

 =  = 0.5 was studied for comparison. These results show 
the fractional order controller is promising and may work 
better than the (integer) PID controller. 
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