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Abstract—The aim of this paper is to use high-order 

harmonic balance method (HBM) as a novel solution procedure 

for investigation of the Duffing-relativistic oscillation. Usually, 

a set of complex nonlinear algebraic equations is appeared 

when HBM is applied. Investigating analytically for such kind 

of complex nonlinear algebraic equations is tremendously 

difficult and cumbersome. In the present study, a small 

parameter is found, for which the power series solutions 

produces desired results. The obtained results are evaluated by 

comparing with the exact solutions computed numerically. The 

effect of initial conditions in the nonlinear natural frequencies 

is carried out and it is proved the proposed method is not only 

simple, but also more reliable for analysis for the Duffing-

relativistic oscillator. The method is mainly illustrated in 

strongly nonlinear Duffing-relativistic oscillator, but it can be 

widely applicable in other problems arising nonlinear sciences 

and engineering. 

Keywords—duffing-relativistic oscillator, harmonic balance 

method, power series solutions 

I.  Introduction  
The nonlinear Duffing-relativistic oscillator has received 

considerable attention, especially in the last decade in 
nonlinear sciences and engineering. Along with the rapid 
progress of nonlinear sciences, an intensifying interest 
among scientists and researchers invest their effort to 
developed varieties of analytical approximate and numerical 
solution methods to solve Duffing-relativistic oscillator. A 
large variety of variational and perturbative methods 
commonly used for nonlinear oscillatory systems, especially 
for strongly nonlinear oscillators have been recently 
extended for instance, one can refer to the Modified He’s 
Homotopy Perturbation Method [1-3], He’s Modified 
Lindsted-Poincare Method [4], He’s Max-Min Approach 
Method [5], He’s Energy Balance Method [6-9], He’s 
Frequency Amplitude Formulation [10-11] and other  
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classical perturbative and non-perturbative techniques 
including Homotopy Perturbation Method [12], Elliptic 
Balance Method [13], Algebraic Method [14], Rational 
Energy Balance Method [15], Iteration Method [16-18], 
Residue Harmonic Balance Method [19], Hamiltonian 
Approach Method [20], Rational Harmonic Balance Method 
[21] and so on. Harmonic balance method (HBM) is another 
method for solving strongly nonlinear oscillator [22-29]. 
However, most of these methods only considered first-order 
approximation solution which leads to a low accuracy. In 
addition, the aforementioned methods also do not have 
ability to gain the solution in high precision. Furthermore, 
the solution procedures are tremendously difficult task and 
cumbersome, especially, for obtaining a higher order 
approximation. In this situation, approximate periodic 
solutions for the Duffing-relativistic oscillator are studied by 
employing HBM. The second-order approximate solution 
has been obtained for the Duffing-relativistic oscillator. The 
proposed technique not only provides accurate results, but 
also it is more convenient and effective for solving more 
complex nonlinear problems. Error analysis is then carried 
out and performance of the solution technique is compared 
with exact ones. 

II. Problem Descriptions 
The equation of Duffing-relativistic oscillator is of the 

form  

                  0
12

3 



x

x
xxx


 ,               (1) 

where, over dot denotes differentiation with respect to time 
t and 10   . For 0  the equation governs as a type 

of the well know Duffing oscillator which represents free 
undamped vibration of an orthotropic clamped triangular 
plate [8]. 

 

Figure 1: Schematic of a Duffing-relativistic oscillator. 

III. The method 
Let us consider a second-order nonlinear differential 

equation 

                 ]0)0(,)0([),(
0

2

0
 xAxxfxx         (2) 
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where, )( xf  is a nonlinear function such 

that, )()( xfxf  , 0
0
  and   is a constant. 

Considering a periodic solution of “(2)” is in the form 

             
))9cos()7cos(

)5cos()3cos()cos((
0

tztw

tvtutAx


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



         (3) 

where, 
0

A ,   and   are constants. If  vu1  
and the initial phase value 0)(

0
t , solution “(3)” readily 

satisfies the initial conditions ]0)0(,)0([
0

 xAx  . 

Substituting “(3)” into “(2)” and expanding )( xf  in a 

Fourier series, it converts to an algebraic identity as 
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By comparing the coefficients of equal harmonics of 
“(4)”, the following nonlinear algebraic equations are found 
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With the help of the first equation, 2 is eliminated from 

all the rest of “(5)”. Thus “(5)” takes the following form 
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       (6) 

Substitution  vu1 , and simplification, 

second-, third- equations of “(6)” take the following form 
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                     (7) 

where, ,,
21

GG  exclude respectively the linear terms 

of ,, vu . 

Whatever the values of
0

 ,  and
0

A , there exists a 

parameter 1),,(
000
A , such that ,, vu  are 

expandable in following power series in terms of 
0

  as  

     ,, 2

0201

2

0201
  VVvUUu           (8) 

where,  ,,,,,
2121

VVUU  are the constants. 

Finally, substituting the values of ,, vu  from “(8)” into 

the first equation of “(6)” for determining the natural 
frequency  . This completes the determination of all 

related functions for the proposed periodic solution as given 
in “(3)”. 

IV. Example 

A. Duffing-relativistic oscillator 
For a Duffing-relativistic oscillator it be can written as 

  0
12

3 



x

x
xxx


 ,                     (9) 

with the initial condition is, ]0)0(,)0([
0

 xAx   

Here, substitution of approximation 
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into “(9)” yields, 

     0
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      From “(3)” the first-order approximation solution of 
“(11)” is given by “(12)”. 

                        )cos(0 tAx                              (12) 

Now substituting “(12)” into “(11)”, taking 1 and 

setting the coefficient of )cos( t the following algebraic 

equation is obtained  

              010241752401152 26

0

4

0

2

0
 AAA            (13) 

Thus, from “(13)” the first-order approximate natural 
frequency can be written as “(14)”. 
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Therefore, the first-order approximation solution of “(9)” 

is “(12)” ..ei , )cos(
0

tAx   where   is given by “(14)”. 

Now considering a second-order approximation solution 

))cos()3(cos()cos( 00 ttuAtAx               (15) 

Substituting “(15)” into “(11)” taking 1 and then 

equating the coefficients of )cos( t  and )3cos( t , the 

following nonlinear algebraic equations are obtained  
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After simplification, “(16)” takes the form 
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By elimination of 2  from “(17)” with the help of 

“(18)” and simplification, the following nonlinear algebraic 
equation for u  can be found from “(19)” as follows: 


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
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where, 
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The solution of “(20)” in terms of 
0

  is 
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Now, substituting the value of u  from “(20)” into 

“(18)”, the second-order approximate natural frequency  is 

determined. Thus the second-order approximation solution 

of “(9)” is ))cos()3(cos()cos(
00

ttuatax    where 

u  and   are respectively given by “(20)” and “(18)”. 

II. Results and discussions 
The first and second-order approximate solutions and 

their relative errors (RE) obtained from this article by 
applying HBM for the Duffing-relativistic oscillator is 
shown in Table 1, Table 2, Figure 1 and Figure 2. It 
illustrates the accuracy of the HBM method by comparing 
with the numerical forth order Runge-Kutta results and also, 
analytical error between these quantities for two numerical 
cases in each 0.5 sec. It can clearly be seen that the accuracy 
of the solutions (second-order approximation) obtained by 
the proposed technique is very close to the exact solutions. It 
is noted that the solution procedure of the proposed method 
is simple, straightforward, quite easy and highly efficient.  

Table 2: First- and second-order approximate solutions of “(1)” and 
compared with numerical forth order Runge-Kutta method for A0 = π/18 

  

 

 

Table 2: First- and second-order approximate solutions of “(1)” and 

compared with numerical forth order Runge-Kutta method for A0 = π/6 

Note: x(1) and x(2) respectively denote the first and second-order 

approximate solutions obtained by HBM. Similarly, xnu represents the 

numerical forth order Runge-Kutta solution and relative error is denoted by 

RE of x = | ( xnu- x(i)) | where i=1,2. 

 

Figure 2. Graphical comparison of first-order approximate solutions of 
“(1)” and with numerical forth order Runge-Kutta method for A0 = π/18 

 

Figure 3. Graphical comparison of second-order approximate solutions of 
“(1)” and with numerical forth order Runge-Kutta method for A0 = π/18 

t 

 

x
(1)

  

 

x
(2)

  

 

xnu  

 

 RE of 

x
(1)

  

 RE of 

x
(2)

   

0.0 0.5236 0.5236 0.5236 0.0000 0.0000 

0.5 0.5045 0.4993 0.4988 0.0057 0.0005 

1.0 0.4484 0.4316 0.4306 0.0178 0.0010 

1.5 0.3596 0.3339 0.3336 0.0260 0.0003 

2.0 0.2445 0.2213 0.2225 0.0220 0.0012 

2.5 0.1114 0.1049 0.1069 0.0045 0.0020 

3.0 -0.0297 -0.0112 -0.0094 0.0203 0.0018 

3.5 -0.1687 -0.1274 -0.1258 0.0429 0.0016 

4.0 -0.2953 -0.2436 -0.2410 0.0543 0.0026 

4.5 -0.4004 -0.3544 -0.3506 0.0498 0.0038 

5.0 -0.4762 -0.4475 -0.4440 0.0322 0.0035 

t 

 

x
(1)

  

 

x
(2)

  

 

xnu  

 

% RE of 

x
(1)

  

% RE of 

x
(2)

   

0.0 0.1745 0.1745 0.1745 0.0000 0.0000 

0.5 0.1738 0.1736 0.1735 0.0003 0.0001 

1.0 0.1716 0.1707 0.1706 0.0010 0.0001 

1.5 0.1679 0.1661 0.1658 0.0021 0.0003 

2.0 0.1628 0.1597 0.1594 0.0034 0.0003 

2.5 0.1563 0.1519 0.1514 0.0049 0.0005 

3.0 0.1485 0.1426 0.1421 0.0064 0.0005 

3.5 0.1394 0.1323 0.1318 0.0076 0.0005 

4.0 0.1291 0.1210 0.1206 0.0085 0.0004 

4.5 0.1177 0.1090 0.1087 0.0090 0.0003 

5.0 0.1054 0.0965 0.0964 0.0090 0.0001 
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 The advantages of this method include its analytical 
simplicity and computational efficiency, and the ability to 
objectively find better results for many other oscillatory 
problems arising in nonlinear sciences and engineering. 
Figure 2 and Figure 3 represent the graphical comparison 
between approximate solutions of “(1)” and with numerical 
forth order Runge-Kutta method (A0 = π/18 ) for first-order 
and second-order respectively. From these figures, it is 
found that the second-order approximate solutions of “(1)” 
is more closer to the numerical forth order Runge-Kutta 
method.  

V. Conclusion 
Approximate periodic solutions for the Duffing-

relativistic oscillator were analytically obtained using HBM. 
Periodic solutions and natural frequencies were analytically 
studied. Error analysis was also carried out and it was found 
that the proposed method lead to more accurate solutions. 
The high accuracy and validity of approximate solutions 
assured us about the solution and reveal the method can be 
used for strongly nonlinear oscillators even with a higher 
order of nonlinearity. To sum up, we can say that the 
method introduced in this study for solving Duffing-
relativistic oscillator can be considered as powerful, an 
efficient alternative of the previously existing methods.  
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