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Abstract—Piezolaminated smart structures are mostly used as 
light weight structures to control structural response in various 
structural applications. Piezoelectric materials possesses a 
property of direct and converse piezoelectric effects which can 
be adequately employed to control the deflection, vibration, 
shape and buckling of the structure. Due to the application of 
piezoelectric materials to control structural response, stability 
and control of light weight structures tends to be the governing 
criterion which requires significant attention. A finite element 
methodology is developed for stability analysis of smart 
piezolaminated composite plates subjected to combined action 
of electrical and mechanical loading. The finite element 
formulation is based on higher order shear deformation 
theory.  Numerical analysis is made for stability analysis of 
simply supported piezolaminated plate. 

Keywords—Piezoelectric, Finite element method, vibration 
and stability. 

I. Introduction  
 

Piezolaminated smart structures are becoming more 
popular as they can be used as light weight structures to 
control structural response in various structural applications. 
Piezoelectric materials have direct and converse 
piezoelectric effects which can be adequately employed to 
control the deflection, vibration, shape and buckling of the 
structure. Due to the application of piezoelectric materials to 
control structural response vibration, stability and control of 
light weight structures tends to be the governing criterion 
which requires significant attention. A finite element 
methodology is developed for analysis of smart 
piezolaminated composite plates subjected to combined 
action of electrical and mechanical loading. The finite 
element formulation is based on higher order shear 
deformation theory.  Numerical analysis is carried out for 
stability analysis of simply supported piezolaminated plates. 

 
Smart material systems and structures have been adopted 

by engineering and research community over the last two 
decades. In the recent past theoretical as well as 
experimental investigations has been successfully carried 
out in the area of smart structures. The need of light weight 
structures in engineering applications has led to the gradual 
replacement of many isotropic materials with composites 

which provide both high stiffness and low weight. 
Additional requirements for multi functionality, active 
vibration, noise control and structural health monitoring has 
led to the development of adaptive piezolaminated materials 
and structures. The coupled electromechanical properties of 
piezoelectric ceramics and their availability in the form of 
thin sheet makes them well suited for use as distributed 
sensors and actuators for controlling structural response.  

modeling and shape control of composite beams with 
embedded piezoelectric actuators is carried out considering 
piezoelectric effect (Dhonthireddy and Chandrashekhara, 
1996), whereas shape control of non-symmetric 
piezolaminated composite beams has been perormed for the 
same (Eisenberger and Abramovich, 1997). Nguyen et al. 
(2007) presented evolutionary piezoelectric actuators design 
optimization for static shape control of smart plates. 
Analysis of piezolaminated beams with large deformations 
is available (Mukherjee and Chaudhuri, 2002). Large 
deformation analysis of piezolaminated smart structures 
using higher-order shear deformation theory is provided 
further (Kulkarni and Bajoria, 2007). Some work on  
postbuckling and vibration characteristics of piezolaminated 
composite plate subject to thermo-piezoelectric loads has 
been carried out (Oh and Lee, 2000). Postbuckling of shear 
deformable laminated plates with piezoelectric actuators 
under complex loading condition including thermo-electro-
mechanical loading is conducted further (Shen, 2001). Thus 
in present work the stability problem of piezolaminated 
plates/shells is examined considering electromechanical 
loading. In the present work vibration and stability of 
piezolaminated plates is studied subjected to combined 
action of electrical and mechanical loading. The efficiency 
of finite element model developed is verified by comparing 
the results obtained with those of available in literature and 
found to be in good agreement. 

II. Finite Element Formulation 
It is observed that most of the theories for analysis of plates 
and shells are based on the classical and first order shear 
deformation theory, which requires shear correction factor. 
Whereas higher order shear deformation theory assume 
realistic cross section deformation pattern through the shell 
thickness. Here a finite element formulation for stability 
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analysis of piezolaminated smart plate / shell is based on 
higher order shear deformation theory. 
 
Fig. 1 shows a laminated composite plate provided with 
piezoelectric patches at top and bottom surface. In higher 
order shear deformation theory, higher order terms of 
displacement field are incorporated to consider transverse 
shear deformation correctly. Thus the three dimensional 
elasticity problem is approximated to two dimensional 
formulation using Taylor series expansion for displacement 
components u, v and w.  
 

 
Figure1 Laminated composite plate provided with piezoelectric patches at 
top and bottom surface. 
 
To account for thickness of laminate, these displacement 
components are expressed in terms of thickness co-ordinate 
z. Hence the warping of the transverse cross-section is 
automatically incorporated. The displacement field is 
expressed as: 

 
Khare et al (2003) formulated higher order theory for cross 
ply laminated shallow shells which assumed realistic cross 
section deformation pattern through the thickness. Thus the 
displacement field is assumed as: 
Assuming the condition of zero shear stresses at the top and 
bottom surface of laminate, equations for HOST 9 reduced 
to  

*3*
0

2
0 xx zuzzuu    

*3*
0

2
0 yy zvzzvv                                                                                 

                                        0ww                                  (1)   

Where, ),,(),,,( zyxvzyxu  and ),,( zyxw  are the 

displacement of any point in the plate domain in in x, y and 
z direction respectively. ),,(),,,( 00 zyxvzyxu  and 

),,(0 zyxw  are the displacement of midpoint of normal. 

),(),,( yxyx yx  are the rotations of normal at the middle 

plane in x and y direction about y and x axis 

respectively. ),,(),,( *
0

*
0 yxvyxu ),(),,( **

0 yxyxw x and

 yxy ,*  are higher order terms which accounts cubic 

variation of normal. 
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Strain-Displacement Relations 

 
The strains associated with the displacement model for 
linear bending are given by 
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Shell Element and Shape functions 

 
Parent element 

 
For corner nodes                    
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Geometry within the Element and Displacement Field 
 
Fig. 2 shows a typical eight noded degenerated quadrilateral 
shell element. x, y, z are the global coordinates and 

 and,  are the natural coordinates. ζ=0 represents the 

mid surface. ζ=1 represents outer surface of shell and ζ= -1 
represents the inner surface of shell. Coordinates of middle 
plane points can be obtained as below. 
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Figure 2 Coordinate system for 8-noded degenerated shell 
element 
 
The global coordinates of any point in the element at a 
distance ζ on normal are given by 
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Where,
ii bti xxx  ,

ii bti yyy 
ii bti zzz  and

  ,iN are shape functions as given in equation (3). 

Thickness vector at any node is written as                                

     kbtjbtibtz zzyyxxv
i
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Displacement field 

At each node introduce two vectors 1v  and 2v mutually 

perpendicular in the tangential plane. ii vv 2,1  and iv3  are the 

unit vectors in the direction of local axes, i, j and k are unit 
vectors in the direction of global axes. Let u, v, w be the 
displacement of a point having its local coordinates; ui, vi, 
wi be the displacement of corresponding mid surface which 

is having local coordinates  ,  and  . 


iwiviu ,,  be 

the relative displacement along global x, y, z directions due 
to rotation of normal at node i, i.e. ziyixi  ,,  about 

the global axes.  
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Where, 
ji

ml 11 , and 
k

n1 are direction cosines of vector 
iv1 . 

Similarly,   
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 (9)                  
At any point i, for a point located at a distance  from 

middle plane will undergo some u, v displacement due to 

rotation 1 and 2 . 
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Displacement-strain relation 
 
Strains are related with displacements as follows, 

                                 eB                                (12)  
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Due to the direct and converse piezoelectric effect there 
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in smart piezoelectric structures. Thus the piezoelectric 
equations can be decoupled resulting in electromechanical 
coupling. Variation of temperature effect is neglected in 
formulation. The constitutive equations of a piezoelectric 
material including the effect of electrical and mechanical 
expansion can be expressed as follows. Hence dielectric 
displacement vector in local coordinate field is given as, For 
the piezoelectric layer polarized in the thickness direction, 
the dielectric displacement vector using direct piezoelectric 
equation is, 

 

             pEgeD    

                                  pt EeC                  (14) 

 
In all above equations, {D} is electric displacement vector, 
[e] is dielectric permittivity matrix,   is the strain vector, 

 g  is the dielectric matrix.  pE is the electric field vector,  

  is the stress vector and [C] is the elastic matrix for 
constant electric field. 
 
 

Electrical Potential Function 

One electrical degree of freedom is adopted per node of an 
element. If sa and  are the electric displacement at any 

point in the actuator and the sensor layers, respectively, the 
electrical potential functions in terms of the nodal potential 
vector are given by  
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Where,  paN  and  psN  are the shape function matrices 

for the actuator and sensor layers, respectively.   e
a  and 

 e
s are the nodal electric potential vector for the actuator 

and sensor layers, respectively and can be given as follow. 
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The electric field strength of an element in terms of the 
electrical potential of the actuator and sensor layers is 
expressed as                 
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The electric field vector for the actuator and sensor layer can 
be modified as                                                   
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Stiffness Matrix Equations  
 
Element stiffness matrix can be written as, 
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Where,  
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Thus the element equation in the global stiffness matrix can 
be written as 
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Stability Criterion 
 
Stability is associated with for the given loading whether 
response of the structure remains bounded or it goes 
unbounded. The critical load is the load under which the 
structure can be in equilibrium both in the straight (initial) 
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and the slightly bent configuration. If   is a scalar 
multiplier for any arbitrary reference for which, geometric 
stiffness matrix, based on an arbitrary reference intensity of 
membrane streeese.  is determined such that both the 
reference configuration represented by the load vector {d} 
and slightly deformed  remains in equilibrium configuration.  
Thus For free vibration problems, the equations of motion 
can be expressed as the following eigenvalue problem form 
which natural frequency can be calculated:  

                  

                                   02  EMK                   (24) 

Where, matrix [K] denotes the stiffness matrix which may 
contain the terms of the in-plane stresses and matrix [M], 
the mass matrix. 
For stability problems, the natural frequency vanishes and 
the stability equation can be expressed as the following 
eigenvalue problem: 
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Where, the lowest magnitude of eigen value gives critical 
buckling load and the vector  d represents the buckled 

mode shape.   
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The buckling stresses can be calculated through the stability 
Eq. (51) as eigenvalue problems. Another method to obtain 
the critical buckling stresses of piezolaminated plates 
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compressive stresses until the lowest natural frequency 
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III. Numerical Analysis 
 
Buckling of simply supported square piezoelectric 
laminated plate (p/00/900/900/00/p) 
 
The piezoelectric laminates with piezolayer attached at the 
top and bottom of the plate is subjected to a uniaxial 
uniform edge compressive force Nx. Hence a square 
piezoelectric laminated plate of thickness of 0.01 m and side 
length „a‟ is having simply supported boundary on all four 
edges. The laminate consists of a (p/00/900/900/00/p) 
Graphite-Epoxy sublaminate provided with two PZT-5A 
attached on outer surfaces of the plate. Each piezoelectric 
layer has thickness of 0.1h, whereas each elastic layer has a 
thickness of 0.2h.  
 
The effect of electric condition is examined. However, its 
outer surface may be grounded (closed circuit condition) or 
remains free (open-circuit condition). In addition, two types 
of potential distribution on the open-circuited outer surface 
are assumed.  

TABLE I.  ELASTIC AND PIEZOELECTRIC PROPERTIE 

 

  

 
Elastic Properties 

Properties Graphite-
Epoxy 

PZT-4 

)(11 GpaE  181 61.0 

)(22 GpaE  10.3 61.0 

)(33 GpaE  10.3 53.2 

)(12 GPaG  7.17 22.6 

)(23 GPaG  2.87 21.1 

)(32 GPaG  7.17 21.1 

12  0.28 0.35 

23  0.28 0.38 

32  0.33 0.38 

 
 
Piezoelectric Properties 

Properties Graphite-
Epoxy 

PZT-4 

31d (10-12 m/V) 0 -171 

32d (10-12 m/V) 0 -171 

33d (10-12 m/V) 0 374 

15d (10-12 m/V) 0 584 

24d (10-12 m/V) 0 584 

11 (10-8 F/m) 0.0031 1.53 

22 (10-8 F/m) 0.0027 1.53 

33 (10-8 F/m) 0.0027 1.5 
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TABLE II.  BUCKLING LOADS 

  
Critical uniaxial buckling load (Nxa2/E2.h3) of simply supported square 
laminated plate (p/00/900/900/00/p) 

a/h  Closed-circuit Open-circuit 

 
5 

Present 8.162 8.430 
Akhras et. Al [13] 8.181 8.517 

 
10 

Present 14.810 15.518 
Akhras et. Al [13] 15.006 15.869 

 
100 

Present 21.570 21.764 
Akhras et. Al [13] 20.040 22.294 

 
The results of critical uniaxial buckling loads of laminate 
with closed and open loop shwos that piezoelectricity has 
little effect on the buckling load of the laminates with 
closed-circuits. The incerase in critical buckling load is 
found to be 3.179 %, 4.56 % and 0.89 % for open loop 
circuit than that of closed loop for a/h = 5, 10 and 100 
respectively. 

 

IV. Conclusions  
Piezoelectric actuators and sensors are being used 
increasingly in structural applications involving shape and 
vibration and buckling control. With proper selection and 
placement of piezoelectric actuators, it is feasible to 
generate enough forces on a structure in order to control its 
response in buckling. It is observed that the maximum 
percentage variation in critical uniaxial buckling load is 4.56 
% for PZT-5 for a/h = 10. Hence the increase in stiffness 
due to piezoeffect can be considered with sufficient 
accuracy to control its response.  
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