
International Conference on Advanced Computing, Communication and Networks‟11

113

Design of Dual-Core Embedded System using LEON3 Processor

Rahul K. Hiware

Research Scholar: Department of Electronics Engineering

G. H. Raisoni College of Engineering, Digdoh Hills,

Nagpur, India 440016

rahulhiware@gmail.com

Dinesh V. Padole

Assistant Professor: Department of Electronics Engineering

G. H. Raisoni College of Engineering,Digdoh Hills,

Nagpur, India 440016

dv_padole@rediffmail.com

Abstract— A multi-core processor is a single integrated circuit in

which two or more processors have been attached for enhanced

performance, reduced power consumption and more efficient

simultaneous processing of multiple tasks.

This paper presents dual-core embedded system designed with

two LEON3 processors. Dual-core system has developed with

centralized shared memory for process sharing, shared bus and

tightly-coupled homogeneous scalable multi processor

architecture.

 Keywords— Multi-Core, Processor, LEON3, Leon
Processor, Process Management in Multi-Core System, Embedded
System, Controller

I. INTRODUCTION

To meet the growing needs of computing power,

communication speed and performance requirements

demanded by today‟s applications, processor clock speed has

to be increased. However, increasing clock speed is not viable

anymore due to heat dissipation and power consumption

constraints. Hence Instead of trying to increase the clock

speed, multi-core processor architectures with the lower

frequency can be used.

A multi-core processor is a single integrated circuit in

which two or more processors have been attached for

enhanced performance, reduced power consumption and more

efficient simultaneous processing of multiple tasks. A

processing system is composed of two or more

independent cores. An individual Processor is called as Core.

The cores are integrated onto a single integrated circuit die or

multiple dies in a single chip package. Multi-core system

implements multiprocessing in a single physical package.

 Fig.1 Multi-core System

Fig.1 shows a multi-core system uses n numbers of processors

(core). There are m numbers of slaves which are nothing but

various peripherals required in system. This system uses

shared bus for data transfer and communication.

LEON is a 32-bit CPU microprocessor core, based on

the SPARC-V8 RISC architecture and instruction set. It was

originally designed by the European Space Research and

Technology Centre, part of the European Space Agency, and

after that by Gaisler Research. It is described in

synthesizable VHDL. LEON has a dual license model:

A LGPL/GPL FLOSS license that can be used without

licensing fee, or a proprietary license that can be purchased for

integration in a proprietary product. The core is configurable

through VHDL generics, and is used in system-on-a-chip

(SOC) designs both in research and commercial settings. The

LEON3 is a synthesisable VHDL model of a 32-bit processor

compliant with the SPARC V8 architecture. The model is

highly configurable, and particularly suitable for SOC designs.

II. LEON3 ARCHITECTURE

The LEON3 core has the following main features:

 Implements 32-bit Scalable Processor

Architecture(SPARC-V8)

 7-stage pipeline with Harvard architecture i.e.

Separate Instruction and Data caches

 AMBA-2.0 AHB bus interface

 New modules can easily be added using the on-chip

AMBA AHB/APB buses.

 Hardware multiplier and divider

 Synthesizable VHDL model

 Highly configurable

 Suitable for system-on-a-chip (SOC) designs

 Availability of Full Source Code

 on-chip debug support and multiprocessor

LEON3 is a 32-bit processor core conforming to the

IEEE-1754 (SPARC V8) architecture. It is designed for

embedded applications, combining high performance with low

complexity and low power consumption. Fig.2 shows the

internal functional blocks of LEON3. These blocks are

explained as follows.

Integer unit

The LEON3 integer unit implements the full SPARC

V8 standard, including hardware multiply and divides

instructions. The number of register windows is configurable

Master 1 Master #n

Slave 1 Slave #2 Slave #m

Shared Bus

mailto:rahulhiware@gmail.com
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/Central_Processing_Unit
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/SPARC
http://en.wikipedia.org/wiki/Reduced_Instruction_Set_Computer
http://en.wikipedia.org/wiki/Instruction_set
http://en.wikipedia.org/wiki/European_Space_Research_and_Technology_Centre
http://en.wikipedia.org/wiki/European_Space_Research_and_Technology_Centre
http://en.wikipedia.org/wiki/European_Space_Agency
http://en.wikipedia.org/w/index.php?title=Gaisler_Research&action=edit&redlink=1
http://en.wikipedia.org/wiki/VHSIC_Hardware_Description_Language
http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/FLOSS
http://en.wikipedia.org/wiki/System-on-a-chip
http://en.wikipedia.org/wiki/System-on-a-chip

International Conference on Advanced Computing, Communication and Networks‟11

114

within the limit of the SPARC standard (2 - 32), with a default

setting of 8. The pipeline consists of 7 stages with a separate

instruction and data cache interface (Harvard architecture).

Cache sub-system

 LEON3 has a highly configurable cache system,

consisting of a separate instruction and data cache. Both

caches can be configured with 1-4 sets, 1–256 Kbyte/set, 16 or

32 bytes per line. Sub-blocking is implemented with one valid

bit per 32-bit word. The instruction cache uses streaming

during line-refill to minimize refill latency. The data cache

uses write-through policy and implements a double-word

write-buffer. The data cache can also perform bus-snooping on

the AHB bus. A local scratch pad ram can be added to both

the instruction and data cache controllers to allow 0-waitstates

access memory without data write back.

Fig.2 LEON3 processor core block diagram

Floating-point unit and co-processor

The LEON3 integer unit provides interfaces for a

floating-point unit (FPU), and a custom co-processor. Two

FPU controllers are available, one for the high-performance

GRFPU (available from Gaisler Research) and one for the

Meiko FPU core (available from Sun Microsystems). The

floating-point processors and co-processor execute in parallel

with the integer unit, and does not block the operation unless a

data or resource dependency exists.

Memory management unit

A SPARC V8 Reference Memory Management Unit

(SRMMU) can optionally be enabled. The SRMMU

implements the full SPARC V8 MMU specification, and

provides mapping between multiple 32-bit virtual address

spaces and 36-bit physical memory. A three-level hardware

table-walk is implemented, and the MMU can be configured

to up to 64 fully associative TLB entries.

On-chip Debug support

The LEON3 pipeline includes functionality to allow

non-intrusive debugging on target hardware. To aid software

debugging, up to four watch-point registers can be enabled.

Each register can cause a breakpoint trap on an arbitrary

instruction or data address range. When the (optional) debug

support unit is attached, the watch-points can be used to enter

debug mode. Through a debug support interface, full access to

all processor registers and caches is provided. The debug

interfaces also allows single stepping, instruction tracing and

hardware breakpoint/watch-point control. An internal trace

buffer can monitor and store executed instructions, which can

later be read out over the debug interface.

Interrupt interface

LEON3 supports the SPARC V8 interrupt model

with a total of 15 asynchronous interrupts. The interrupt

interface provides functionality to both generate and

acknowledge interrupts.

AMBA interface

The cache system implements an AMBA AHB

master to load and store data to/from the caches. The interface

is compliant with the AMBA-2.0 standard. During line refill,

incremental burst are generated to optimize the data transfer.

Power-down mode

LEON3 processor core implements a power-down

mode, which halts the pipeline and caches until the next

interrupt. This is an efficient way to minimize power-

consumption when the application is idle, and does not require

tool-specific support in form of clock gating. To implement

clock-gating, a suitable clock-enable signal is produced by the

processor.

Multi-processor support

LEON3 is designed to be use in multi-processor

systems. Each processor has a unique index to allow processor

enumeration. The write-through caches and snooping

mechanism guarantees memory coherency in shared-memory

systems.

III. DESIGN APPROACH

This section explains various steps and design

strategies for designing multi core system using LEON3

processor core.

Multi core system is designed using shared resources like

shared memory, shared bus and shared peripherals.

A. Shared memory

Two different possibilities of a tightly coupled (i.e.

Shared memory system) multi core system exist. Shared

memory model enable simple data sharing through a uniform

mechanism of reading and writing shared structures in the

common memory. Here all processors have symmetric access

to the shared memory. In contrast, the distributed shared

memory model implements a physically distributed-memory

system. It consists of multiple independent processing nodes

with local memory modules, connected by a general

interconnection network like switches or meshes.

Communication between processes residing on different nodes

involves a message-passing model that requires extensive

additional data exchange. The messages have to take care of

data distribution across the system and manage the

communication.

For a machine with shared address space, that address

space can be used to communicate data implicitly via load and

store operations. The advantage of shared memory

International Conference on Advanced Computing, Communication and Networks‟11

115

communication is Ease of programming. The program is

loaded in the shared memory and the control flow can be

maintained with simple programming constructs without too

much of OS multiprocessor support.

In the Shared memory architecture, each memory

request takes the same time independent of the CPU.

Additionally, no message-passing communication system that

 (a)

(b)

Fig.3 (a) Shared Memory model (b) Distributed Memory model

could limit the bandwidth of the interconnection is needed.

Therefore, the shared memory architecture is the best choice

for analyzing tight bounds of a memory access.

B. Arbiter based shared AMBA bus

Proposed architecture is based on AMBA AHB/APB

shared buses, to which new module of processor or peripherals

can easily be added. It is a single resource which can carry

only one transaction at a time. Hence to resolve the issue of

bus sharing among multiple masters arbitration policies are to

be used. Round robin and fixed arbitration policies are

included in the design. Peripherals are also shared among

various maters.

Following steps are taken for building Multi core

embedded controller.

C. Assigning Unique Identity to Each Processor

For a multi core system, there has to be some means

to uniquely identify each processor in order to have the control

to execute a process on the desired processor and also to

differentiate each processor. Therefore, a unique integer

starting from „0‟ can be assigned to each processor and that is

hardwired in the Processor Status Register (PSR) of each

processor. The format for PSR register is given in fig.4.

In Multi core system one processor is designated as the BP

(Boot Processor) because it is capable of controlling all system

hardware, including AP (Application Processor) startup and

shutdown. The BP is not necessarily the first processor,

especially in fault tolerant multiprocessor systems in which

any available processor can be designated as the BP.

(a)

(b)

Fig.4 (a) Initial PSR (b) Modified PSR

D. Embedded Controller with multiple masters

The AHB bus can connect up to 16 masters. The

LEON processor „0‟ is connected as master „0‟ with processor

id „0‟ and processor „1‟ as master „1‟ with processor id „1‟.

Each processor has its own instruction and data cache

controllers inter-faced through the AHB interface to

communicate to the AHB bus. Each processor has its

corresponding Cache Controller register sitting on the APB

bus as slaves at different addresses. The Cache Control

registers of both the processors and the other registers like

PSR, Floating unit and Coprocessor unit registers are

initialized in the boot code. The AHB controller controls the

bus and implements the bus arbitrator. The Boot Processor

(processor 0) is by default put on to the lowest index.

E. Default master setting

Every system must include a default bus master

which is granted the bus if all other masters are unable to use

the bus. When granted, the default bus master must only

perform IDLE transfers. If no masters are requesting the bus,

then the arbiter may either grant the default master or

alternatively it may grant the master that would benefit the

most from having low access latency to the bus. Granting the

default master access to the bus also provides a useful

mechanism for ensuring that no new transfers are started on

the bus and is a useful step to perform prior to entering a low-

power mode of operation. The default master must be granted

if all other masters are waiting for SPLIT transfers to

complete.

F. Adding Boot Register as slave to AHB Bus

The first problem with a multiprocessor kernel is

waking up other processors. Other processors should not start

CPU

Cache

CPU

Cache

CPU

Cache

Shared Memory

CPU

Cache

CPU

Cache

CPU

Cache

Memor

y

Memor

y
Memor

y

International Conference on Advanced Computing, Communication and Networks‟11

116

or captured elsewhere. So to achieve this, a Boot Register is

added as an AHB slave at address „0xf0000000‟.

G. Cache Coherency

The data cache uses write-through policy and

implements a double-word write-buffer. The data cache can

also perform bus-snooping on the AHB bus. The 23rd bit of

Cache Control Register (CCR) when asserted enables the

AHB-bus snooping. Changes are made in the cacheable areas

which are checked before Cache Snooping. The address on the

bus is checked if it belongs to the PROM area or RAMS area.

The address of AHB Boot-Register is also added to the list to

make the address to be snooped and the changes made at the

AHB Boot Register be notified to all the processors that have

the snooping enabled. During snooping, if the data transfer is

noticed by the master who issues it, then that data transfer is

not considered by that master to avoid redundancy.

III. DESIGN OF EMBEDDED SYSTEM USING LEON3

CORE

A. Single Core System

Embedded system consists of processor with memory

and Peripherals. The processor could be single (in single core)

or multiple (in Multi core). Peripheral on chip can be Timer,

serial communication interface, Interrupt controller and

programmable IO devices. The system design presented here

have used shared bus (AMBA Bus is utilized for core

interface) and shared resources (peripherals and Memory).

Fig.5 shows block diagram for embedded controller design

using single Leon core.

Fig.5 Block diagram of Single core LEON3 System

Fig.6 shows structure for embedded controller design

using single Leon core.

 Embedded controller using LEON processor is

synthesized with the help of Xilinx 9.1 ISE synthesis software

tool. Timer & Interrupt controller is added as peripheral as

well as shared memory is build up on chip. Leon processor

will be working as master, whereas Peripherals (Timer,

Interrupt controller) & memory is configured as slave. AMBA

is used as shared bus for all the cores.

B. Dual Core System
Fig.7 shows block diagram of embedded controller

using two LEON3 processors. In the diagram L-0 and L-1 An

indicate LEON3 processor core. Each processor has

their individual cache memory. Both cores (processor L0, L1)

are connected using AMBA shared bus. Leon „0‟ is configured

as boot processor.

Fig.6 RTL Structure of Single core LEON3 System

Fig.7 Block diagram of Dual core LEON3 System

Fig.8 RTL Structure of Single core LEON3 System

C. Resource utilization by systems
 TABLE 1 shows table of comparisons of total

resources used by Single, Dual and Quad core systems. The

device used for implementation is Xilinx FPGA Vertex5

International Conference on Advanced Computing, Communication and Networks‟11

117

(XC5vlx30-3ft324). Numbers in circular bracket shows total

availability of particular component of FPGA device used

TABLE 1 RESOURCE UTILIZATION BY SINGLE AND DUAL CORE EMBEDDED

SYSTEMS

IV.CONCLUSION

The performance of multi core system can be calculated in

terms of power consumption.

The comparison of percentage power consumption by Multi

core controller can be calculated as –

% power Utilization = N * (Power by single core controller)

*100 / Power by Multi core controller

 Where, N is number of core in Multi core SoC.

 The homogeneous dual core system using LEON soft

core, shared memory and shared AMBA bus has been

designed and results are verified. The design is made scalable

where user has to specify the number of processor and

arbitration policy. The performance comparison of single and

quad core system is obtained in terms of resource utilization

and power consumption. It is concluded that power

consumption reduces by increasing number of on chip

processor.

REFERENCES

[1] Jiri Gaisler. The LEON-3 Processor User’s Manual,

Version 1.0.20, February 2009 http://www.gaisler.com,

[2] GRLIB IP Core User’s Manual, Version 1.0.22,April

http://www.gaisler.com/cms/index.php?option=com_conte

nt&task=view&id=156&Itemid=104/grip.pdf

[3] IBM, QuadCore, http://www-

03.ibm.com/systems/x/quadcore.html

[4] Dual-Core Intel® Xeon® Processor, “Increasing Data

Center Density While Driving Down Power and Cooling

Costs” www.intel.com/go/xeon

[5] Snehal Dongare, Dinesh Padole, Dr. Preeti Bajaj, “Design

of Shared Resource Based Multicore Embedded Controller

Using LEON Processor”, ICETET-10, Goa, India.

[6] Dinesh Padole, Dr. Preeti Bajaj, “Fuzzy Arbiter Based

Multi Core System-On-Chip Integrated Controller For

Automotive Systems: A Design Approach”, IEEE

CCECE08, Canada

[7] Xilinx Inc. The Virtex VDCM — Digital Clock Manager.

www.xilinx.com/products/virtex/techtopic/vtt010.pdf

[8] RAMP – Research Accelerator for Multiple Processors,

http://ramp.eecs.berkeley.edu/

[9] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,

Jaswinder Pal Singh, and Anoop Gupta, “The SPLASH-2

Programs: Characterization and Methodological

Considerations”, 22nd International Symposium on

Computer Architecture, pages 24-36, Santa Margherita

Ligure, Italy, June 1995 (http://www-

flash.stanford.edu/apps/SPLASH/)

[10] Timothy Wong “LEON3 System-on-Chip Port for BEE2

and ASIC Implementation”,

 Single core Dual core

Xilinx FPGA, Vertex5

device used

XC5vlx30-

3ft324

XC5vlx30-

3ft324

Number of Slice

Registers (19200)
3596 6213

Number of Slice LUTs

(19200)

7070 11687

Number of fully used

Bit Slices (14269)
2231 3631

Number of bonded

IOBs (222)
113 113

Total Utilization 36% 60%

http://www.gaisler.com/
http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=156&Itemid=104
http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=156&Itemid=104
http://www-03.ibm.com/systems/x/quadcore.html
http://www-03.ibm.com/systems/x/quadcore.html
http://www.intel.com/go/xeon
http://www.xilinx.com/products/virtex/techtopic/vtt010.pdf

