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Round off Error propagation in simulation of RC 
circuit 

Subtitle: Simulation of RC circuit 
Shreyas Fadnavis 

 
Abstract— Electrical devices often use RC, LC or RLC circuit to 
design power amplifiers, filters and mixers etc. Complex iterative 
algorithms are used for the simulation of these circuits. . This 
paper illustrates numerical experiments on growth of rounding 
off error in simulation of simple RC circuit using fourth order 
Runge-Kutta method (RK) and the Runge-Kutta-Fehlberg with 
adaptive step size control method (RKF). Our analysis indicates 
that in simulations with RK method, round off error grows ~ 
80%  with 10-15 iterations and ~96-98% within 100 iterations 
with different step sizes and double precision. In the simulations 
with RKF method round off error grows to 70% with 10-20 
iterations and ~80% within 100 iterations. It does not exceed 
80% for 1000 of iterations for single and double precision. This 
indicates that growth of round off error in RKF method is less 
and it should be used to minimize round off error.  

Keywords—Simulation of RC circuit, Round off error,  Runge 
Kutta methods 

I. Introduction 
In the era of powerful computers, the errors of numerical 

integration are the main limitation in the modeling of 
dynamical systems (Milani and Nobili 1988). For the long-
term behavior, it is known that integration errors grow with 

respect to time/number of iterations, using traditional 
integrators such as the Runge-Kutta methods (Hairer et al., 
1993). Number of papers has reported that the growth rate 
becomes linear if simplestic integrators are used (Sanz-Serna 
1992; Hairer and Stoffer, 1997; Hairer and Gustaf, 2005). The 

integration errors are composed of the truncation and the 
round-off errors. After the truncation error has been made 
insignificant by means of symmetric linear multistep methods, 
the round-off error will emerge and start to play a key role 
(Petit 1998). Previous studies indicate that to minimize the 
round off error one needs to avoid adding huge number to 
small number, avoid subtracting numbers that are close, 
minimize the number of arithmetic operations involved 
(Widrow and Kollár, 2008 and references therein). The growth 
of round off error while using numerical integrations has been 
reported in the variety fields e.g simulation of weather 
forecasting, agriculture, electronic circuits, signal processing, 
stock market, billing of mobile phones, astrology etc. (Nastov 
et al., 2007; Janakiraman et al., 2000; Khalkho et al., 2013; 
Khalid et al., 2007; Goel, and Dasha, 2007; Widrow and  
Kollár, 2008). 
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With the advancement of technology there is increasing 
demand of high performance portable communications 
system. This imposes the need for simulation algorithms those 
can be used efficiently and accurately (Nastov et al., 2007). 
Runge kutta methods are widely used in simulation 
algorithms. While writing algorithms using Runge Kutta 
method round off error may propagate and affect output 
(Khalid et al., 2007). Recently few papers have suggested 
algorithms for simulations of electric/electonic circuits 
(Nastov et al., 2007; Oliveira et al 2006). These papers suggest 
that iterative computations may affect output.  

 
The RC, LC or RLC circuits are commonly used in 

electronic devices. The RC circuit is used to protect against 
power outages. RC-coupled amplifiers are used very often in 
circuits with vacuum tubes or discrete transistors. The RF 
communication circuits such as mixers, switched-capacitor 
filters, and amplifiers also contain combination of RC/RLC 
circuits. Hence in this paper we present examples of round off 
error growth in simulation of simple RC circuit with different 
step sizes for single and double precision. This paper is 
organized as: section 2 describes fourth order Runge Kutta 
method (RK) and the Runge-Kutta-Fehlberg method with 
adaptive step size control (RKF). Concept of RC circuit is 
explained in section 3. Section 4 illustrates propagation of 
error due to rounding off in simulation of RC circuit using RK 
and RKF method. Conclusions are made in section 5. 

II. The Runge-Kutta methods 
The Runge-Kutta methods are an important family of 

iterative methods for the approximation of the solutions of 
ordinary differential equations. These methods were 
developed around 1900 by the German mathematicians Runge 
and Kutta. Details of Runge Kutta methods are reported by 
Bogacki and Shampine (1989), Gear, (1971), Shampine, and 
Watts (1977). 

 

A. Fourth order Runge-Kutta method 
The classical Runge Kutta (RK) method is given by 

Dormand and Prince (1980) and  Griffiths and Higham (2010).  
Consider the problem Y‘(t)=f(t,y) 
Y(t0)=α 
Define h to be the time step size and ti = t0 + ih. Then the 
following formula 
ω0= α 
k1 = hf(ti; ωi) 
K2=hf(ti+h/2; ωi+k1/2) 
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K3=hf(ti+h/2; ωi+k2/2) 
K4=hf(ti+h/2; ωi+k3) 
ωi+1= ωi+1/6(K1+2k2+2K3+k4) 

Computes an approximate solution, that is ωi  ≈ y(ti). 

B. the Runge-Kutta-Fehlberg method 
with adaptive step size control  

The Runge-Kutta-Fehlberg (RKF) method is an example of 
adaptive time-stepping method. It uses a fourth-order and 
fifth-order Runge-Kutta method that share some evaluations of 
f(t; y), in order to reduce the number of evaluations of f per 
time step to six, rather than the ten that would normally be 
required from a pairing of fourth and fifth-order methods. In 
this method we will use adaptive step size control during the 
computation. The idea is to start with a moderate step size. 
When we detect that the expected error is larger than ɛ, then 
we reduce the step size and recalculate the current step. When 
we detect that the expected error is less than ɛ, then we keep 
the current step and slightly enlarge the step size in the next 
step. This requires us to have a good estimation of the 
expected error (Fehlberg, 1969). The flow chart describing 
adaptive step size control is given in Fig. 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Flow diagram of the step size control by use of the 

step doubling method 
 

The RKF method is explained below. 
 
ω0= α 
k1 = hf(ti; ωi) 
K2=hf(ti+h/4; ωi+k1/4) 
K3=hf(ti+3h/8; ωi+3/32K1+9/32K2) 
K4=hf(ti+12h/13; ωi+1932/2197*K1-
7200/2197*K2+7296/2197*K3) 

K5=hf(ti+12h/13; ωi+439/216*K1-8*K2+3680/513*K3-
845/4104*K4) 
K6=hf(ti+12h/13; ωi-8/27*K1+2*K2-
3544/2565*K3+1859/4104K4-11/40*K5) 
ωi+1=ωi+25/216*K1+1408/2565K3+2197/4104K4-1/5*K5 
ώi+1= ωi+16/135*K1+6656/12825*K3+28561/56430*K4-
9/50*K5+2/55*K6 
R=1/h|ώi+1- ωi+1| 

δ=0.84  

 
if R≤ɛ keep ω as the current step solution and move to the next 

step with step size δh 
if R> ɛ recalculate the current step with step size δh. 

III. R-C Circuit 
A resistor–capacitor charging circuit (RC circuit), or 

RC filter or RC network, is an electric circuit composed of 
resistors and capacitors driven by a voltage or current source 
as shown in Fig. 2. A first order RC circuit is composed of one 
resistor and one capacitor with voltage source arraged in 
series. RC circuits can be used to filter a signal by blocking 
certain frequencies and passing the others. The most common 
RC filters are the high-pass filters and low-pass filters. Bband-
pass filters and band-stop filters usually require RLC filters, 
though crude ones can be made with RC filters 
 
 
 
 
 

 
 
  
 
 
 
 
 
Fig.2 A typical resistor–capacitor circuit (RC circuit). V is 
source voltage. I(t) represents currents at time t, VR(t) stands 
for voltage across resistor ‗R‘ at time t. VC represents voltage 

across capacitor ‗C‘ 
 

The typical RC circuit is shown in Fig.2 If the charge on the 
capacitor is Q and the current owing in the circuit is I, the 
voltage across R and C are RI and Q/C respectively. 
Kirchoff‘s law says that the voltage between any two points 
has to be independent of the path used to travel between the 
two points, 

RI(t) +(1/C). Q(t) = V (t) 
Assuming that R; C and V are known, this is still one 
differential equation in two unknowns, I and Q. However the 
two unknowns are related by I(t) =dQ/dt (t)  
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 so that RQ‘(t) +(1/C). Q(t) = V (t) 
 The V = 0 Solution 
If the applied voltage V = 0, this equation is separable and 
consequently easily solved. 

 

 

 
Applying log on both the sides 

ln|Q|=  

 
where K =  .  At t = 0, Q(0) = Ke0= K, so 

. Hence the capacitor just discharges 
exponentially through the resistor.  When V is nonzero, the 
equation is no longer separable. But there is another approach 

that allows us to solve  .  

Divide by R we get 

   (1) 

 
  Multiply whole equation by µ(t). 
µ(t)*Q‘(t)+1/RC*µ(t)*Q(t)=1/R*µ(t)*V(t)  (2) 
 
Apply derivative on left hand side and substitute 
µ‘(t)=1/RC*µ(t). This equation for µ(t) is separable and hence 
may be solved by the same technique that we used to solve  
 

.  

Now substitute .  

Multiply equation (1) by  gives 

 

 

 

 
If V(t)=V0  Then 

, 
therefore 

   (3) 
Where K=k/R is an arbitrary constant (Meijs, 2008). 
 

IV. Results and Discussions 
 

We simulated RC circuit described in section 3. 
Simulations have been carried out with two methodologies (1) 

RK method and (2) RKF method as described in section 2. 
These experiments are conducted for different step sizes for 
single and double precisions. We track round off error for 
1000 time steps/iterations and for step size h=0.001, h=0.01, 
h=0.05 with same initial conditions for both the methods. 
Figure 3 illustrates increase in round off error (expressed in 
percentage) versus number of time steps/iterations for step size 
h=0.001.  

 

 

 

 

 
 
 
 
 

C.  

 
 

 
Fig.3. Growth of round of error versus number of 

steps/iterations in simulation of RC circuit for step size= 
0.001, for RK single precision (solid red line), RK double 

precision (dotted red line),   RKF single precision (solid blue 
line), RKF double precision (blue dotted line). 

 
In case of RK method, round off error grows rapidly to ~85 % 
within 10 time steps/iterations and ~98 % within 100 time 
steps/iterations. For RKF method round off error is negligible 
for the initial 10 time steps/iterations. It then increases to 
~77% within next 10 time steps/iterations. Due to adoptive 
size control round off error does not exceed 80% for 1000 
time steps/iterations. These experiments are repeated for 
double precision indicated by dotted lines. It shows that round 
off error is less in double precision than in single precision 
(but shows same nature as for single precision). 
 
Figure 4 shows percentage increase of round off error with 
number of time steps/iterations for both the methods and for 
the step size h=0.01. It shows that for RK method round off 
error increases to ~83% within first 10 time steps/iterations 
and ~98% within 100 time steps/iterations. In case of RKF 
method round off error is negligible for initial 6 time 
steps/iterations it then increase to 68% within 10 times 
steps/iterations. It increases to 80% within 100 time 
steps/iterations and does not exceed later. The round off error 
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is less for double precision (indicated by dotted lines) than the 
single precision 
 
 
 
 
 
  

 

 
 
 
 
 
 
 
 
 
 

 

Fig.4. Growth of round of error versus number of time 
steps/iterations in simulation of RC circuit for step size= 
0.01; for RK single precision (solid red line); RK single 
precision (dotted red line);   RKF single precision (solid 
blue line) and RKF double precision (blue dotted line). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.5 Growth of round of error versus number of time 
steps/iterations in simulation of RC circuit for step size= 0.05; 
for RK single precision (solid red line); RK double precision 

(dotted red line),   RKF single precision (solid blue line), RKF 
double precision (blue dotted line). 

 

The percentage increase of round off error with number of 
time steps/iterations for both the methods and for the step size 
h=0.05 is shown in Figure 5. In RK method round off error 
grows to ~82% within first 10 time steps/iterations it then 
increase to ~96% within 100 time steps/iterations and ~100% 
within 1000 time steps/iterations. For RKF method round off 
error growth is higher ~75% within first 10 time 
steps/iterations for the step size h=0.05 as compared to other 
smaller step sizes. It then grows to 80% within 100 time 
steps/iterations. 
 

The Figures 3-5 show that round off error is higher for 
smaller step sizes for RK method, while it smaller in case of 
RKF method for first 100 time steps/iterations. It increases to 
~98-99% within 1000 time steps/iterations for simulation with 
RK method and ~80 with RKF method. 

 

V. Conclusions 
 

We simulate Resistance-Capacitor (RC) circuit with fourth 
order Runge-Kutta method (RK) and the Runge-Kutta-
Fehlberg method with adaptive step size control (RKF). 
Numerical experiments are conducted for different step sizes 
and for single/double precisions. Our analysis indicate that in 
simulations with RK method, round off error grows ~ 80%  
with 10-15 time steps/iterations and ~96-98% within 100 time 
steps/iterations with different step sizes; for single and double 
precisions. For both the methods, round off error is less in 
simulations with double precision as compared to single 
precision for different step sizes. For RK method the round off 
error is higher for smaller step sizes, while it smaller in case of 
RKF for first 100 time steps/iterations. Simulations with RKF 
method round off error grows to 70% with 10-20 time 
steps/iterations and ~80% within 100 time steps/iterations. It 
does not exceed 80% for 1000 of iterations for single and 
double precision. This indicates that growth of round off error 
in RKF method is less. The above results are pertaining to 
fourth order Runge-Kutta and Runge-Kutta-Fehlgerg method 
with adaptive step size control. There may be a few more 
methods used by other researchers and a few more may evolve 
in future. We hope that researchers will be able to find 
comprehensive treatment to keep the round off error minimal. 
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