

34

Software Internationalization:

Incorporating Users‟ Translations

Jauhar Ali

Abstract—Internationalized software, which support
localization by allowing users to choose the user interface
language of their choice, has a lot wider audience than a
single-language software. Providing resource files for
multiple languages is expensive and not scalable for large
number of languages. This limits the availability of
software products to only those communities who speak
major languages. In this study, we investigate the idea of
allowing users to create user interface translation of
software and share them with other users. We believe that
such an approach is scalable as it does not incur any extra
cost.

Keywords—internationalization, localization, user
interface

I. Introduction
The user interface of any software is based on a

particular natural language. Well-internationalized software
supports other languages by providing localized versions of
the software, each targeting the language of a particular
community. However, such localization is very expensive
and not scalable [1]. Software producing companies target
only few major communities for the localized versions of
the software. No software producing company can afford
providing localized versions for all communities. When the
population size of a spoken language is small, it is less
likely that a software will use that language for its user
interface. Also, for such a small market there is not much
incentive for software producing companies to make effort
to offer a localized version of the software for that
language. This results in the limited availability of niche
software products in minorities‟ languages [1], [2].

Jauhar Ali

College of Engineering and Computer Science
Abu Dhabi University
PO Box 59911, Abu Dhabi
United Arab Emirates

The main technique for internationalization of software
is to create resource files for each target language. The
resource files contain a list of key-value pairs, where all
values are translations of the keywords to be displayed in
the user interface. For each target language, a separate
resource file needs to be created and packaged with the
software. Users can select the language of the interface to
be one for which a resource fie is created and packaged by
the software developer. The cost of creating resource files
is the main obstacle in providing localized software for
languages of minor communities. Crowdsourcing [3], a
practice of getting a task performed by a group of people
that offer their services, has the potential to create user
interface translations at a very low cost.

This paper describes a method through which users can
create translations of a software‟s user interface and share

them with other users. Users can also modify translations
which are shared by others. The resulting translations may
not be perfect as they are done by end users, but they are
produced at no cost and they help in making the software
available to minor communities. The approach is especially
beneficial for creating translations of educational and
entertaining software products for kids by their parents or
guardians.

II. Related Work
Many books have been written on software

internationalization and localization [4], [5], [6]. Some
textbooks on programming [7] also covers the topic
because of its importance. Khadam and Vanderdonckt [8]
have reported a method for solving the problem of Arabic
and Hebrew languages reading from right to left instead of
the left to right of Western languages. Peng, Yang and Zhu
[9] addresses the need for reengineering existing code that
has been written in ANSI format to the preferred Unicode
for ease of internationalization. The requirement to
reengineer existing software is also addressed by Wang, et
al. [10] who describe a technique for finding the "need-to-
translate constant strings".

Rößling [11] has designed a Java Package that recreates
some of the most commonly used Java Swing (graphical

Proc. of the Intl. Conf. on Advances in Computing and Information Technology-- ACIT 2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-8859-9 doi: 10.3850/ 978-981-07-8859-9_08

35

user interface) components to deal with internationalization
issues such as changing text, formatting numbers, and
changing icons. The idea of changing icons is a good
contribution for localization but it does not offer a full
solution to the internationalization problem.

Web translating services, such as Google Translate [12]
provide an accessible method of automated translation.
However, the quality of such translation is not as good as
the translation performed by a human [13].

Hunt [14] conducted a survey of email applications
aimed at children for multi-lingual support. He reported
that only one out of eighteen email applications had an
interface specifically designed for children and offered
multi-lingual support in few languages. Hunt has developed
an email application for children in which parents can
provide translation of user interface in a new language [2].

III. Design and Implementation
Software producing companies can provide multi-

lingual support for only few major languages. This limits
the availability of the software products to major
communities only. Providing multi-lingual support for
minor communities is too expensive for companies and is
not scalable. We investigated the idea of providing the
ability for end users or their guardians to change a given
translation, or create a new translation.

For internationalization and localization, the Java
programming language provides the concepts of
Locales[15] and Resource Bundles[16]. A locale object is
used to represent a particular language and region (or
country) while a resource bundle contains words or phrases
translated into a particular language. Multi-lingual systems
first load a particular resource bundle with the help of a
locale object specified by an end user. When the code needs
to display a text string to the user, the code finds the
appropriate string from the resource bundle by supplying a
key. For example, if the code needs to display the English
phrase “Start game”, instead of the string “Start game”,

being directly displayed, the key „START_GAME‟ is used

to retrieve the string “Start game”, from the English

language resource file. Figure 1 shows a section of the
English resource file.

When the user chooses a different language, all the text
to be displayed will be retrieved from the resource file of
that language using the same keys. Figure 2 shows the
resource file for Pashto language translation. Pashto is
spoken in Afghanistan and in the Khyber Pakhtunkhwa
province of Pakistan.

Figure 1: Part of an English property resource file showing
the keys and phrases to be retrieved by the system.

Figure 2: Part of a Pashto property resource file showing the
keys and phrases to be retrieved by the system.

de fau lt

a ren

en_U K ar_ AEen_U S ar_S A

. . .

Figure 3: Locales and resource bundles hierarchy.

Proc. of the Intl. Conf. on Advances in Computing and Information Technology-- ACIT 2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-8859-9 doi: 10.3850/ 978-981-07-8859-9_08

36

The Java resource bundle architecture provides a robust
mechanism for dealing with missing translations. When
code attempts to find the string from a resource file for a
key that does not exist, it will attempt to obtain the string
from another resource file. The resource file chosen will be
the one that is of the same base language but with no
country specified. If it still fails, it will then revert to the
default language file where the key should exist, but the
string returned will be in the default language (English)
rather than the required language. It works this way
because locales and resource bundles are organized in a
hierarchical structure, such as the one shown in Figure 3.
When an exact match is not found, then the most specific
locale is used following the hierarchy from the root
(default).

The Java resource bundle architecture requires that
resource files for each target language should exist together
with the internationalized software product. These resource
files are traditionally supplied by software vendors. As

indicated earlier, this approach is not scalable if we wish to
have support for wide range of languages, especially those
spoken by minority groups. Our approach is to allow users
of internationalized software to provide translated phrases
for all displayable text in the software and save it as a new
resource file. Users can then choose this new language for
the user interface of the software and can also share it with
other users.

IV. Translation Creation
To demonstrate our idea, we have developed a small

Java game application for kids. The default user interface is
in English language which is provided as a resource bundle.
The application allows users to provide translations in the
language of their choice for the text phrases used in the
application and save it as a new resource file. Figure 4
shows a screen shot of the Graphical User Interface (GUI)

Figure 4: Creating or updating user interface translations

Proc. of the Intl. Conf. on Advances in Computing and Information Technology-- ACIT 2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-8859-9 doi: 10.3850/ 978-981-07-8859-9_08

37

that a parent or guardian can use to create a new language
resource file for the game application.

In Figure 4, the top-left area (Languages and Locales)
allows users to choose the source and target languages by
the Locale objects. Source language is one of the languages
that is supplied by the vendor along with the software as a
resource bundle file. Target language is either an existing
language for which the translation is updated, or a non-
existing language for which translation is created. In the
former case, the target language is selected by using the
combo box labeled with „Target Language Locale‟. In the

later case, because a Locale object does not exist, the
language is selected by using the two combo boxes labeled
as „Target language‟ and „Target region‟. In the lower area,

the left column shows all the phrases in the source
language, and the right column shows the same phrases
translation in the target language. In the case of new
translation, the right column will be blank initially. Users
can update the Unicode text entries in the right column and
can save their work. The top-right area allows users to
share translation files with other users. The idea is that
internationalized software should have a corresponding
web address that has resource bundle files for different
languages. Registered users can upload their saved
translation files, or download translation files shared by
other users.

V. Conclusions
Internationalized software, which has localized versions

for different user communities, has a wider range of
audience. The major activity in internationalization is
providing multi-lingual support for the user interface part
of software. Software producing companies usually provide
user interface translations in major languages only as
resource bundle files. They cannot afford to provide
translations for all languages as it expensive. This results in
limited availability of the software to small communities
who speak minor languages. Allowing users to create
translations of software user interface and sharing it with
other users is a viable option. It is scalable as it does not
cost much. The only requirement is that the software should
allow users to create or import resource bundle files for the
languages of their choice.

References

[1] Simultrans. (2013). Localization Return-on-Invetment.
Retrieved on Nov 1, 2013, from Simultrans: your languages -
yourtimeline: http://www.simultrans.com/education/articles/27-
projectmanagement/32-localization-roi

[2] Hunt, T. (2013). Cost effective software internationalisation.
Journal of Applied Computing and Information Technology,
17(1).

[3] Howe, J. (2006). The Rise of Crowdsourcing . Retrieved on Nov
1, 2013 from Wired:
http://www.wired.com/wired/archive/14.06/crowds.html?pg=1&
topic=crowds&topic_set=

[4] Uren, E., Howard, R., & Perinotti, T. (1993). Software
Internationalization and Localization: An Introduction. John
Wiley & Sons, Inc.

[5] Andrew D., & David C (2001). Java Internationalization.
O'Reilly & Associates; ISBN-10: 0596000197, ISBN-13: 978-
0596000196

[6] Bert E. (2000). A Practical Guide to Localization. John
Benjamins Pub Co; ISBN-10: 1588110060, ISBN-13: 978-
1588110060

[7] Liang, Y. D. (2011). Introduction to Java Programming. New
Jersey: Pearson Higher Education.

[8] Khaddam, I., & Vanderdonckt, J. (2011). Flippable user
interfaces for internationalization. Proceedings of the 3rd ACM
SIGCHI symposium on Engineering interactive computing
systems (pp. 223-228). Pisa: ACM.

[9] Peng, W., Yang, X., & Zhu, F. (2009). Automation technique of
software internationalization and localization based on lexical
analysis. Proceedings of the 2nd International Conference on
Interaction Sciences: Information Technology, Culture and
Human (pp. 970-975). Seoul: ACM.

[10] Wang, X., Zhang, L., Xie, T., Mei, H., & Sun, J. (2009).
Locating Need-to-Translate Constant Strings for Software
Internationalization. International conference on software
engineering (pp. 353-363). Vancouver.

[11] Rößling, G. (2006). Translator: A Package for
Internationalization for Java-based Applications and GUIs.
ITiCSE'06 (p. 312). Bologna.

[12] Google Translate API. Retrieved on Nov 1, 2013 from Google
Developers: https://developers.google.com/translate/

[13] Stefansson, I. (2011). The advancement of Google Translate and
how it performs in the online translation of compound and
proper nouns from Swedish into English. Retrieved on Nov 1,
2013 from Karlstads Universitet: http://kau.diva-
portal.org/smash/get/diva2:440909/FULLTEXT01

[14] Hunt, T. D. (2011). Any language you choose:
internationalization of a children's email application.
International Conference on Engineering and Information
Management, (pp. 34-38). Chengdu.

[15] Java API documentation : Locale class.
http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html

[16] Java API documentation : ResourceBundle class.
http://docs.oracle.com/javase/7/docs/api/java/util/ResourceBund
le.html

Proc. of the Intl. Conf. on Advances in Computing and Information Technology-- ACIT 2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-8859-9 doi: 10.3850/ 978-981-07-8859-9_08

