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Abstract - We propose an approach to design of robust 
stability of dynamic control systems with one input and one 
output signals. Design of robust stability of control system is 
based upon construction A.M. Lyapunov’s function. The system 

states the method of construction of A.M. Lyapunov’s function on 

the basis of geometric interpretation of Lyapunov theorems 
concerning asymptotic stability and concepts of dynamic systems 
stability. It is supposed that undisturbed motion of system 
corresponds to origin of coordinates, and equations of state are 
comprised as regard to perturbances, i.e. in deviations of 
perturbational motion.  Hence, equations of state evaluate the 
rate of change of perturbance (disturbance) vector and in stable 
system is directed to origin of coordinates.  Gradient vector from 
Lyapunov required function is directed to the side opposite.  

Construction of Lyapunov vector function and 
development of robust stability of dynamic control system with 
undetermined parameters is based on conception of A.M. 
Lyapunov’s direct method. Stability region comes as simplest in 
equations by certain parameters of controlled object and selected 
controller’s parameters.   

 

Keywords - Control systems, robust stability, superstability, 
Lyapunov’s direct method, modelling, simulation. 

Introduction  
Control system design is one of the main tasks in 

automation of all branches of industry, including machine 
manufacturing, energy sector, electronics, chemical and 
biological, metallurgical, textile, transportation, robotics, 
aviation, space systems, high-precision military systems, etc. 

Robust stability can be viewed as one of the 
outstanding issues in control theory, which is also of a great 
practical interest. Assuming that the linear system is 
controllable, a sufficient condition is proposed to preserve the 
properties of object (parameters of control systems) when 
system uncertainties are introduced. The most important idea 
in the study of robust stability is to specify constraints for 
changes in control system parameters that preserve stability. 
For the purpose of studying the system dynamics and their 
control, we considered models of observing input and output 
signals of the object and the representing its behavior in the 
state space as most suitable. 
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This paper presents the approach of the construction of 
Lyapunov functions based on the geometric interpretation of 
the Lyapunov’s direct method (also called the second method 
of Lyapunov) and on gradient of dynamical systems in the 
state space of systems. 

The content of this paper is organized in next way: In 
section 2, we introduce the basic equations of the model and 
their expanded form and received the Lyapunov function, 
geometric interpretation, gradient vector components and 
super stability condition of system. In section 3, we have 
considered the existence and robust stability, super stability of 
nominal system and define condition of robust stability. In 
Section 4 considered a case study of conditions with the 
simulation practical example.  

II. Mathematical model 
formulation 

Lyapunov conception of direct method is universal for 
development of dynamic systems stability [1,2]. Widespread 
application of concepts of this method is refrained by lack of 
general method to selection or construction of Lyapunov 
functions and difficulties of their algorithmic representation.  
In many cases real objects function in conditions of various 
degree of uncertainty. Upon that uncertainty can be defined by 
lack of knowledge of true values of control objects parameters 
and their unpredictable temporal variations.  

That is why robust stability plays a significant part in 
dynamic objects control theory. In general definition 
development of robust stability consists in determination of 
restrictions to variation of control system uncertain parameters 
upon which stability is preserved. These restrictions are 
defined by stability region in uncertain and selected 
parameters. 

Considerable number of works is devoted to 
development of control system robust stability. These works 
[3,4] mainly study robust stability of polynomial and matrix 
within the frames of linear development concept of stability of 
continuous and sampled-data control systems. 

The present work offers method to Lyapunov function 
construction by antigradient of desired vector function [5], and 
all candidates of antigradient vector are given by vector of 
state. Stability region is shown as the simplest in equations by 
certain parameters of controlled objects and selected 
regulator’s parameters. Development of system robust stability 
is based upon concept of A.M. Lyapunov’s direct approach 
[2]. 

Let completed time-invariant control system be described 
by equation of state 
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Control law is given by scalar function: 

)()( txktu
T

               (2) 

where 
n

T
kkkk ,,

21
  – matrix of dimensionality 

control ratio 1xn. Then the system (1) in explicit form can be 
presented as: 
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As an instrument for development of system stability (3) 
we apply basic provisions of Lyapunov’s direct method [2], 
for asymptotic stability of system balance state it is necessary 
and enough that there is positive Lyapunov’s function V(x) in 
such form that total derivative with time along the solution of 
differential equation of state (3) is negative definite function, 
i.e. 
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Total derivative with time from Lyapunov’s function (4) 

with regard to equation of state (3) is determined as scalar 
product of gradient vector 

x

xV



 )( from Lyapunov’s function by 

velocity vector 
dt

dx . Gradient vector from Lyapunov’s function 

always points to maximum growth of functions, i.e. from the 
origin of coordinates to the maximum growth of Lyapunov’s 

function. 
When developing system stability [1,2], given motion 

vectors or system is equilibrium corresponds to the origin of 
coordinates. Equations of system state (1) or (3) are always 
constructed in deviations ∆  from steady state 

)(
SS

XXxxX  .  

That is why equations of state (1) or (3) evaluate rate of 
change of deviation vector x  and we can suppose that 
deviation rate vector in stable system points to the origin of 
coordinates. Therefore, if Lyapunov’s function )( xV is given 

by vector-function ))(),...,(),((
21

xVxVxVV
n

, and from geometric 

interpretation of A.M. Lyapunov’s theorem [2] we pick 
antigradients from Lyapunov function candidates equal to 
velocity vector candidates, i.e.  
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Therefore we can write 
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Then for complete time derivative from candidates of 
required Lyapunov vector function we obtain. 
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Of this formula it follows that complete time derivative 
from candidates of Lyapunov vector function will always be 
negative function. 

Also for complete time derivative from Lyapunov function 
)(...)()()(

21
xVxVxVxV

n
  in scalar form we shall obtain  
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Lyapunov function from (5) we can obtain in form of 
vector function [7] with candidates: 
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Lyapunov function in scalar form can be presented in form  
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Assumption of function positive definiteness (7) with 
regard to negative definiteness of quadratic form (5), i.e. 
system stability (3) we shall obtain in form 
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III. Stability Conditions of the 
Steady States of the System 

 

Usually in control systems a proximate mathematical 
formulation is often inaccessible. Real problems inevitably 
contain uncertainty and control system shall be efficient when 
performing constraints (8) and in case of uncertainties within 
parameters. 
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 , obtained earlier in form of Lyapunov 
function, i.e.  
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 Superstability of nominal system (9) is defined by formula 
(4). 
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     Let’s claim that the condition of superstability is 
preserved for all matrices of the family: 
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Thus we clearly determine radius of robust stability of 
interval family. 

Let’s demonstrate how suggested approach works by the 
example based on reduction of matrix A to block-diagonal 
form  

},,...,,,...,,{
~

11

1 




km
JJJJdiagAPPA         (11) 

With diagonal quadratic blocks in form of  

};,...,{
1 l

ssdiag    
       (12) 

   

 

miNN
ii

,...,1,         (13) 

 

 

,
jj

jj

j
J



 
   kj ,...,1        (14) 

where l
ss ,...,

1 - real-valued simple, i
s -real-valued, i

N -

multiple,
jjj

s   - complex conjugate eigenvalues of А 

matrix, where surely nkNNl
m

 2...
1

. Columns of 

nonsingular Р matrix in canonical transformation (11) are 
determined by eigenvectors of А matrix, rules and calculation 
algorithms of which are stated, for example, in [9-11]. 
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verifying the validity of suggested approach to the 
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Complete derivatives with time are negative functions and 
meet the condition of asymptotic stability. 

Candidates of Lyapunov vector function will be equal to: 
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
 . 

Condition of positive definiteness of Lyapunov function 
for system (19) we shall obtain in form 

,0
~~


iii

kbs  ,...,0
~~

1
11


 iii
kbs 0

~~
1 
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Set of inequations (21) also evaluates the condition of 
negativeness of real-valued roots of secular equation in closed 
system. 

1. Let’s observe the system (20) in expanded form for one 
block: 
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If we construct Lyapunov functions in form of vector 
functions with candidates )~( xV

i
 and )~(

1
xV

i 
, we shall obtain 

gradient vector candidates of Lyapunov function as follows  
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Complete derivatives with time from Lyapunov vector 
function candidates  

2

1
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are negative function and meets the conditions of asymptotic 
stability. 

Lyapunov function in scalar form is given in form   

2~)
~~

(2)~(
iiiii

xkbxV   ,  ki ,..,1  

Conditions of Lyapunov function positive definiteness is 
written  

0
~~


iii

kb , ki ,..,1    (22) 

IV. Case Study 
Condition (22) evaluates negativeness of real part of 

performance equation roots in closed system. Thus, the 
correctness of suggested approach is supported by results of 
linear conception of stability, q.e.d.  

We find conditions for the stability of the system  and the 
transition process of the system. 

Then, as an example, let’s analyze a third-order system the 
flow diagram of which is shown in fig. 1.  

 

Figure1.System flow diagram 
 

Transfer function for the open-loop system has a form  
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amplification factors. 

Meaning 
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kkk   , we shall obtain transfer function for the 

closed-loop system  
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Secular equation of closed system has a form  
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after transformation we shall obtain that  
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Dividing all candidates of secular equation by 0
b we shall 

obtain 
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Equations of state in closed-loop control system is written as: 
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According to developed method let’s construct Lyapunov 

function the complete derivative in time of which will be equal 
to: 
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and Lyapunov function shall be obtained in form  
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Conditions of system stability are reduced to the form  
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We can define stability limits   

1. Aperiodic stability limit (zero root s=0) 

0,0
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 k
TTT

k ; 

When the initial settings are follow: 
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The overall the transition process of the system 

shows on the Figure 2. 

 

 
 

Fig. 2.The transition process, exp.1. 
 
 

2. Vibrational stability limit come about from  

1)
11

(
21


TT

  and 1
1

21


TT  

The second case, when the initial settings are follow 

5k ; 2
1
T ; 2

2
T ; 3

3
T  

The overall the transition process of the system shows on the 

Figure 3. 

 

 

  Fig. 3.The transition process, exp.2. 

 

3. Stability limit corresponding to infinite root 
)( s equal to 0

321
TTT  

 

Conclusion 
 

In this paper robust stability perform an important function 
in the theory of control of dynamic objects and  described in 
[5,13-16].  

The main point of robust stability study is to specify 
constraints on the change control system parameters that 

preserve stability. These limits are determined by the region of 
stability in an uncertain and are selected, i.e. changing 
parameters.  

In this paper we propose an approach of the construction of 
a Lyapunov function in the form of a vector function in way 
that it is equal to the gradient of the components,  of the 
velocity vector (right side of the equation of state), but with 
the negative sign. Study of the robust stability of the system is 
based on the idea of a direct method A.M. Lyapunov.  

The region of stability is obtained in the form of simple 
inequalities for uncertain parameters control object and 
selected regulator properties. A new theoretical method of 
robust stability is proposed for linear systems with uncertain 
valued parameters [14,15]. 

This method is an extension of the notion of stability 
where the Lyapunov function is replaced by a geometric 
interpretation of the Lyapunov function with dependence on 
the uncertain parameters [16-18].  

The radius of stability coefficients interval family of 
positive definite functions is equal to the smallest value of the 
coefficients of the vector Lyapunov functions. Theoretical 
results obtained in this paper are an important contribution to 
the theory of stability, to the theory of robust stability of linear 
control systems.  

Thus, for a wide class of systems, we believe the theory is 
sufficiently well developed that work can begin on developing 
efficient approach to aid control engineers in incorporating the 
parametric approach into their analysis and design toolboxes.  

The practical importance of these results should motivate 
new theoretical studies on typical application techniques, 
clarification area of the robust control and design complex 
automated system [18-20]. 

Finally, this is the main results that theoretical 
approaches represent the most promising direction. These 
studies are especially important for the designing more 
effective automation control systems. 
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