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Meteorological Effects on Ground-levels Ozone 

Metrics in Bangkok Metropolis Region 
 Bundit  Apisamajarakul and Sitthichok Puangthongthub* 

 
Abstract—Multiple linear regression models were constructed 

to characterize ground-level O3 metrics in Bangkok Metropolis 

Region where meteorological parameters are different from other 

studies in cold cities. SAS® 9.2 software analyzed 2.9-million 

hourly data during 1997 – 2011 including O3, NO2 and 

meteorological variables such as temperature (T), rainfall (RF), 

relative humidity (RH), pressure (P), solar radiation (SR), wind 

speed (WS) and wind direction (WD). The results showed O3 was 

highest in winter because of clearest sky and an atmospheric 

inversion. O3 had negatively correlated with RH and RF and 

positively correlated with SR and previous day O3 (O3(d-1))  

Natural logarithm transformed O3 was used for 3 O3 metrics 

(daily average, daily maximum and daytime average) for 4 

periods (annual, summer, winter and rainy season). Regression 

results showed that the lnO3(d-1) was a main positive predictor and 

RH is the strongest negative predictor following by a positive SR 

predictor. In winter, major predictors are RH, NO2, WD and 

lnO3(d-1). In raining season, P and SR played significant positive 

predictors. In summer, RH is only a main predictor. For 

validation analysis, the lnO3 daily maximum and daytime average 

in summer show the highest R2 values at 0.573 and 0.568 

respectively. This work investigated the effects of Bangkok 

tropical climate parameters influencing O3 metrics.  

Keywords—ozone, meteorology, multiple linear regression, 

seasonal effects 

I. Introduction  

Ground-level ozone (O3) is a secondary pollutant, which is 

not emitted directly, but it can be formed by complex 

photochemical reactions in the troposphere. The Thai 

Pollution Control Department (PCD) has been reporting that 

hourly O3 levels in Bangkok and its vicinity have been 

exceeding both 8-hour and 1-hour standards because of 

increasing automobile vehicles and urban heat island effect. 

Traffic pollutants such as hydrocarbons (HC) and oxides of 

nitrogen (NOx) can form O3 in the presence of sunlight. The 

tropospheric ozone can negatively affect human health and 

environment. It reduces visibility when reacting with 

particulate matters in the atmosphere and forms photochemical 
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smog resulting in adverse respiratory and cardiovascular 

health effects.  

Climate and seasonal changes in meteorological factors 

have showed links with O3 fluctuations [1, 2]. The favorable 

meteorological conditions can lift up O3 concentrations. Solar 

radiation is the most important factor in O3 synthesis [3, 4]. 

Temperature, a surrogate of solar radiation, and the Peroxy 

Acetyl Nitrate (PAN), naturally released and acting as a source 

of NO2, are also associated with increased O3 [4, 5. Several 

studies reveal that temperature and heat island effect are well 

associated with increased O3 especially in cities where high-

rise buildings and properties of constructed surfaces help sink 

O3 precursors [6, 7]. Wind speed and direction can dilute O3 

level or concentrate it by transporting it from neighboring 

cities. In dense urban setting area, wind may not be able to 

clear the atmospheric completely from air pollutants due to 

structural characteristic of buildings [8, 9]. Thus the previous 

day’s pollutant concentration is useful in predicting next day’s 

concentration as well as pressure, relative humidity and 

rainfall are [10, 11]. Several works have applied these 

metrological variables and O3 precursors in modeling urban O3 

concentration by using correlation coefficient and multiple 

linear regression (MLR) analysis [4, 8, 9, 10, 11, 12, 13, 14]. 

This work aims to investigate the influence of meteorological 

factors on O3 concentrations by MLR method in Bangkok 

where its meteorological condition depends on year-round 

strong solar radiation and high relative humidity with a 

presence of monsoon differing from other study locations in 

cold countries. 

II. Materials and Methods  

A. Area and Data  
This work acquired 2.9 million hourly measurements of 

O3, NO2 and meteorological parameters such as temperature 
(T in °C), solar radiation (SR in MJ/m

2
), wind speed (WS in 

m/s), wind direction (WD in degree), relative humidity (RH in 
%), rainfall (RF in mm) and pressure (P in mmHg) during 
1997-2011 from 23 PCD air quality stations in Bangkok 
metropolis region including surrounding 4 provinces 
(Pathumthani, Samut Prakarn, Samut Sakhon and Nonthaburi). 
Ambient air quality monitoring network is showed in Fig. 1. 
Hourly ozone data were calculated for 3 O3 metrics (daily 
maximum, daily average, and daytime average of 09.00 – 
17.00 hr.), hourly NO2, WS, WD and RH were estimated for 
daily average, hourly T and the previous day O3 (O3(d-1)) were 
estimated for daily maximum, and hourly SR and RF were 
aggregated for daily total. 

Proc. of the Intl. Conf. on Future Trends In Bio-Informatics and Environmental Science-- FTBES 2014 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-1-63248-016-3 doi: 10.15224/ 978-1-63248-016-3-05 

 



 

22 

 

 

Figure 1.  Ambient air quality monitoring stations of PCD in Bangkok 

Metropolis Regions 

B. Methodology 
Pearson product-moment correlation coefficients (r) were 

computed for 4 weather periods to witness how well each O3 

metric was correlated with its predictors (NO2, T, SR, WS, 

WD, RH, RF, P and O3(d-1)).We then fit 12 MLR models (3 O3 

metrics for 4 sub analyses) to characterize what 

meteorological factors were annually and seasonally 

influencing O3 metrics significantly. The mathematical 

expression of MLR equation can be written in the form shown 

in (1).  

                                                       (1) 

where y is participant’s predicted scores on the criterion 

variable (the dependent variable), x_k is the kth predictor 

variables (the kth independent variables), a is an intercept 

constant (the regression constant) and b_k is the non-

standardized multiple regression coefficient for the kth 

predictor variables (the kth regression coefficient). This study 

used the stepwise method that is the combination method of 

backward and forward method to optimize prediction models 

[15]. Each O3 metric (y variable) regressed on its predictors (x 

variables) such as NO2, O3(d-1) and the meteorological 

parameters using SAS
®
 9.2 software.  

III. Results and Discussions  

A. Temporal exploratory analysis  
Seasonal O3 daily average fluctuations were observed 

as shown in Fig.2 with a 14-year average at 15.36 ± 11.01 ppb 

(N = 1,849,697) ranging from few ppb to 56 ppb.The O3 peaks 

were in winter at an average of 18.96 ± 20.68 ppb (N= 

615,606) following by summer with an average of 17.75 ± 

17.6 ppb (N = 44,3630) and rainy with an average of 10.97 

±17.16 ppb (N = 788,121). Winter O3 levels were highest but 

less fluctuating than summer O3 levels because of less cloud 

with strong radiation and shorter atmospheric mixing height 

for well promoting photochemical reaction of O3 precursors 

while their temperature levels were not much different i.e., 

27.92 ± 3.27 °C vs. 30.01 ± 3.00 °C respectively. The lowest 

O3 average found in rainy season was likely due to more 

cloudy days resulting in low solar radiation and wet deposition 

(RF and RH) of O3 precursors [18].  

 

 
Figure 2.  Daily average ozone concentrations from 23 PCD air quality 

stations in Bangkok metropolis region during 1997 to 2011 

B. Correlation Coefficient Analysis  
Most correlation coefficients were found statistically 

significant (P<0.05) except few indicated with star symbol as 

shown in Table 1. NO2 levels were positively correlated with 

O3 maximum in all tests but negatively correlated with other 

two metrics in 3 seasons likely due to natural characteristic of 

unstable species of NOx and O3 precursor mixing speed under 

different meteorological conditions. The O3(d-1) concentrations 

were most strongly positive (r ranging from 0.57 to 0.69) in all 

periods due to day-to-day accumulation [10, 11]. In all 

periods, positive correlations were observed for SR and 

negative correlations were seen for RH and RF consistently. 

For T, O3 maximum and daytime average (two O3 metrics 

during solar radiation available) showed consistent positive 

correlation but for WS, they had negative correlation 

consistently. Pressure trended to be positively correlated in 

many tests, i.e. high P promoted well O3 precursor mixing 

except few tests in summer with negligible r values. Among 

meteorological parameters, RH was predominantly and 

negatively correlated (r average at -0.27) and associated with 

rainy days when cloudier sky and lower SR minimize 

photochemical production while wet deposition diluting O3 

precursors happened [4, 8] following by SR positively 

correlated (r average at 0.18).  

Summer O3 metrics showed strong positive 

correlation with SR and T but strong negative correlation with 

RH. Previous studies demonstrated O3 concentrations were 

high under high T, strong SR and low RH [4, 9, 19]. In rainy 

season, T, SR and P were in positive correlation with all O3 

metrics and in opposite direction for RF, RH and WD. In 

winter, we found SR, WD and P showed positive correlation 

but RF and RH showed negative correlation. Although in rainy 

season RH was high and expected to have high negative 

correlation coefficient but we saw this correlation in summer 

and winter instead. This may be due to high fluctuation of RH 

between wet and dry days comparing resulting in large SD of 

O3 daily average.  For solar radiation, it was positive in all 
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tests as tropospheric O3 are well produced during appearance 

of strong solar radiation.  

C. Multiple Linear Regression Analysis  
The natural logarithm transformation used for all O3 metrics 

has improved model R
2
 (R

2
 results of non-transformed O3 

were not shown). Multicollinearity (by variance inflation 

factor, VIF) and tolerance statistics were also analyzed 

showing no multicollinearity among predictors (result not 

shown). The lnO3 daytime average models showed highest R
2
 

values in all periods possibly that we modeled O3 data set only 

during photochemical period (9-17 hr), following by the lnO3 

daily average and lnO3daily max models (see Table 2). The 

model R
2
 values ranged from 0.5019-0.6207 for lnO3 daytime 

average, 0.4823-0.5888 for lnO3 daily average and 0.4823 -

0.5677 for lnO3 daily maximum. The lnO3(d-1) was robust in all 

models as a main predictor (regression coefficients (βs) 

ranging from 0.608- 0.696 ) which is consistent with the 

similar analysis done in Greater Athens, Greece [10]. NO2 was 

a negative predictor for lnO3 daily and daytime average 

metrics in all periods. This relationship was expected because 

NO2 was an O3 precursor and was decreased to from O3 [20]. 

However this was not seen in most lnO3 daily maximum 

models that predicted only an hour with the highest O3 so 24-

hour average of NO2 may not be an effective predictor for this 

case. 

For the meteorological parameters, RH is the 

strongest negative predictor following by a positive SR 

predictor. Bangkok has tropical climate with long range of 

monsoon (6 months). High RH and wet deposition can absorb 

O3 that is soluble [8, 18, 21] so rainfall can make O3 levels 

lower in the atmosphere [6, 20]. Long period of SR can result 

in adding O3 peak due to the photochemical process [14]. WS 

appeared to negatively predict lnO3 daily maximum and 

daytime average or WS help dilute O3 in daytime during the 

presence of SR by wind transportation [22, 23] but during the 

longer pe 

riod covering day and night time, WS can promote 

mixing of O3 precursors or help transport O3 from other 

vicinity area [14] such as from Samut Prakkarn where the 

PCD has been reported that O3 keeps violating the 1-hr and 8-

hr standards due to additional O3 precursors from industrial 

sources. T (max) was seen as a positive predictor only in lnO3 

daily maximum models in all periods as high T causes 

convection to enhance vertical O3 transport and causes the 

photolysis of PAN chemistry leading to more NO2 formed 4, 

9]. However in this work, T (max) showed random effects in 

other two lnO3 metrics with extended hours of O3 in averaging 

or T (max) may not be a well predictor in Bangkok as 

temperature levels were not much fluctuating year-round 

unlike many studies in cold cities showing large temperature 

gradient between seasons where T can be a significant 

predictor [22, 23]. 

For season specific effect, we observed consistent high 

regression coefficients (βs) in winter for RH and NO2 as 

negative predictors and WD and lnO3(d-1)  as positive predictors 

in all lnO3 metrics while SR was positively high in both winter 

and rainy seasons. Winter meteorological parameters of 

Bangkok are favorable for O3 formation as lowest RH for less 

wet deposition of O3 precursors and O3, highest and ready NO2 

to switch to O3 due to atmospheric inversion, clearest sky for 

no SR interruption with more extended hours than those 

TABLE I.  PEARSON PRODUCT-MOMENT CORRELATION COEFFICIENTS BETWEEN O3 METRICS AND THEIR PREDICTORS BY SEASONAL AND ANNUAL DATA SET 

O3 metrics O3 NO2 P Rain (total) RH T (max) WD WS SR (total) O3 max (d-1)  

(a) Summer  

Daily avg 1 -0.0931 -0.0009 -0.0768 -0.2664 0.0655* 0.0149 0.1444 0.1706 0.5684 

Daily max 1 0.1557 0.0028 -0.0349 -0.2286 0.1561 0.0072 -0.0902 0.0735 0.5806 

Daytime avg 1 -0.0867 -0.0002 -0.0644 -0.3510 0.1708 -0.0152 -0.0176 0.1767 0.5992 

(b) Rainy  

Daily avg 1 -0.1477 0.0534* -0.0378 -0.1704 0.1822 -0.0144 0.0973 0.2295 0.5680 

Daily max 1 0.0389 0.0586* -0.0206 -0.0635 0.2020* -0.0406 -0.0650 0.1328 0.5954 

Daytime avg 1 -0.1652 0.0462* -0.0642 -0.2415 0.2411 -0.0036 -0.0199 0.2503 0.6029 

(c) Winter  

Daily avg 1 -0.1520 0.0238 -0.1158 -0.3160 -0.0663 0.0584 0.0924 0.2747 0.6225 

Daily max 1 0.0353 0.0193 -0.1010 -0.2533 0.0326 0.1655 -0.0674 0.1890 0.6591 

Daytime avg 1 -0.2310 0.0228 -0.0997 -0.3830 0.0129 0.0776* -0.0054 0.2898 0.6767 

(d) Annual  

Daily avg 1 0.0325 0.0235 -0.1051 -0.3395 -0.0016 -0.0908 0.0967 0.1629 0.6514 

Daily max 1 0.2046 0.0248 -0.0834 -0.2773 0.0433 -0.0434 -0.0766 0.0671 0.6731 

Daytime avg 1 -0.0586 0.0319 -0.0936 -0.4093 0.0409 -0.1238* -0.0373 0.1624 0.6916 

* Few coefficients not statistically significant at α = 0.05 
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studies in cold climate countries and different WD possibly 

promoting O3 precursor mixing.  In raining season, we found 

regression coefficients of P and SR showed high values whose 

gradients may be large between wet and dry days thus can 

clearly be detected by regression as major positive predictors 

in raining season. In summer, we did not see any predictors 

showing significant effects except RH. RH was shifting 

mostly in winter following by summer and raining season 

respectively. So this RH fluctuating can be a significant 

predictor and observed through its regression coefficient 

D. Validation of the Models  
We estimated the coefficient of determination R

2
 values in 

all 12 models to see how well observed O3 and predicted O3 

were fit using 2009 data set. The R
2
 ranged from 0.3057 to 

0.5732 (averaged at 0.4628). In rainy, winter and annual tests, 

all lnO3 daily average and daytime average had higher R
2
 

values consistently than those of lnO3 daily maximum. 

However, in summer the lnO3 daily maximum model showed 

the highest R
2
 of 0.5732 following by the lnO3 daily average 

model with R
2
 of 0.5676 (as seen in Figs 3 and 4 respectively). 

We also calculated R
2
 values for non ln-transformed models 

and their results revealed that the R
2
 values of ln-transformed 

O3 models were overall higher than the R
2
 of non-transformed 

O3 models (the highest R
2
 in daily average metrics in summer 

at 0.4922 and rainy season at 0.4125). 

IV. Conclusion 
We analyzed 2.9 million hourly measurements of O3, NO2 

and meteorological parameters in Bangkok and nearby 4 

provinces and found positive correlation for SR and O3(d-1). 

The negative correlation was seen for RH and RF. For T, two 

O3 metrics during sunlight showed positive correlation but for 

WS, they had negative correlation. RH was predominantly and 

negatively correlated following by SR that was positively 

correlated. The natural logarithm transformation of O3 metrics 

improved model R
2
. The lnO3 daytime average models showed 

highest R
2
 values in all periods. The lnO3(d-1) was a major 

predictor. NO2 was a negative predictor for lnO3 daily and 

daytime average metrics. RH is the strongest negative 

predictor following by a positive SR predictor. Bangkok has 

tropical weather with extended hours of SR. WS appeared to 

be a negatively predictor, not only helping O3 dilution in 

daytime but also can promote mixing of O3 precursors. T 

(max) may not be a well predictor in Bangkok as temperature 

was not much variable differing from cold countries indicating 

T was their major positive predictor.  

In addition, unique results were observed in winter, 

favorable to O3 formation, for example lowest RH for less wet 

deposition, highest and ready NO2, clearest sky for no SR 

interruption with more extended daytime hours than those 

studies in cold climate countries and different WD promoting 

O3 precursor mixing. In raining season, we found P and SR 

showed high β values and in summer, only RH was only a 

significant predictor. This work tested the effects of Bangkok 

tropical climate parameters influencing different O3 metrics in 

different weather periods. 
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Figure 3.  Validation for summer daily maximum O3 metric using 2009 data  

 

  

Figure 4.  Validation for summer daytime average O3 metric using 2009 data  
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