
Reprogramming in Heterogeneous Sensor Networks

Vishal Bhatia
Civic Plus, Inc

Manhattan, KS, 66503, USA

Gurdip Singh
 Dept of Computing and Information Sciences

Kansas State University
Manhattan, KS, 66503, USA

Abstract— With advances in sensor networking technology,
new applications involving remote and real-time data collection
are becoming popular and becoming increasingly deployed. For
applications that are deployed in remote locations or deployed at
a large scale, over-the-air remote programming may be needed to
update the application code executing on the sensor nodes.
Deluge is a protocol that provides the capability of remotely re-
programming nodes in a wireless sensor networks. This protocol
accomplishes reprogramming by injecting messages containing
the code image into the network, which are then installed by the
sensor nodes. While this protocol is very useful, it is applicable
only to homogeneous networks wherein all nodes in the network
must be programmed with the same code. This paper proposes a
protocol that allows remote reprogramming of only a specific
node in the network with a new code image. This allows different
nodes to be programmed with different images, which is required
in heterogeneous applications. The protocol has been
implemented using Java and nesC on a network of sensor nodes.
We have conducted extensive experimentation to evaluate the
effectiveness and performance of the proposed protocol. We
present results to show that our protocol is able to reprogram
specific nodes in less time as compared to the original Deluge
protocol, and is able to simultaneously deploy multiple
applications on different subset of nodes.

Keywords— Sensor networks, pervasive systems, Remote data
collection, communication protocols

I. INTRODUCTION

Advances in communication and computing technologies
are enabling deeply embedded, networked systems of sensors
that can collect real-time data from a number of different,
remote sources. A number of companies such as Crossbow,
Intel, and Dust Networks manufacture wireless platforms that
can be used for sensing and communication. Crossbow Inc., for
example (now Memsic, Inc.[1]), provides wireless modules
(motes) for several platform families which include Mica2,
MicaZ, TelosB, and IRIS [1]. Each family may have one or
more platform boards, each operating at a different frequency
range. Figure 1 shows the typically structure of sensor network
with motes communicate via wireless links using Zigbee
protocol. With wireless sensor networks becoming more
prevalent, network of motes are being deployed in remote
environments such as monitoring forest fires, movement of
vehicles in a battlefield, and environmental monitoring in
buildings [2, 4, 6, 8].

The software infrastructure for motes provided by
Crossbow allows a mote can be programmed by first
connecting the mote directly to a base station (computer) via a
serial or a USB port. The complied program image can be
downloaded from the computer on the mote. For example, to
deploy an application on the sensor network in Figure 1, each
mote must be directly first connected to the PC and
programmed. However, sensors systems that have already been
deployed pose a new challenge. As these systems may have to
remain deployed for a period of time, there are situations where
the network nodes may have to be re-programmed after
deployment. Reprogramming may be needed for several
reasons such as software updates or deployment of new
algorithms. For such already deployed networks, the re-
programming of nodes may have to be accomplished remotely
over the air, and in some cases, this might be the only
alternative. For example, for a senor network deployed in a
forest, directly connecting each mote to the base station may
not be an option [3, 5]. Deluge is a protocol that has been
developed for such remote re-programming of nodes [7, 9].
This protocol, for instance, allows the computer in Figure 1 to

inject messages (containing complied code) into a network of
motes without having the motes directly connected to it. The
messages are propagated over wireless links to all motes, and
after its propagation, all nodes reboot with the new image.
While this protocol is very effective and is being used widely,
it is applicable only to homogeneous networks wherein all
nodes must be programmed with the same code. However,
there are applications where sensor nodes in a network may
have different functionality and may have to be programmed
with different code images.

This paper describes the design and development of a protocol
that allows re-programming in heterogeneous networks where
different sensor nodes function differently and have to be

Figure 1: Architecture of a sensor network

This work was supported by National Science Foundation
grants 0551626 and 0615337 and the Kansas State
University Targeted Excellence program.

Proc. of the Second International Conference on Advances in Computing, Control and Communication (CCN)
Editor In Chief Dr. R. K. Singh.
Copyright © 2012 Universal Association of Computer and Electronics Engineers. All rights reserved.
ISBN: 978-981-07-2579-2 doi:10.3850/978-981-07-2579-2 CCN-456

53

Proc. of the Second International Conference on Advances in Computing, Control and Communication (CCN)

programmed with different code images. The proposed
protocol is modular in nature in that it uses Deluge as a
module, and superimposes control via layering to obtain the
desired behavior. This allows our protocol to be compatible
with future versions of Deluge. We have designed this
protocol and implemented it using combination of JAVA and
nesC, an extension of C programming language [1, 10, 11].
JAVA has been used to program the module for the PC
whereas the nesC was used to program the sensor nodes
(motes). The motes use TinyOS, an event-driven operating
system specifically designed for resource-constrained sensor
network nodes. The system was tested on a network of micaZ
and TelosB motes. Our results show that the proposed protocol
is very effective in selectively reprogramming nodes in the
network as compared to the situation where the original
Deluge protocol.

This paper is organized as follows. The next section describes
the Deluge protocol. In Section III, we describe the proposed
protocol in detail. Section IV presents our performance results.
Finally, we conclude in Section V.

II. DELUGE PROTOCOL

Deluge is a protocol used for remote re-programming of
nodes in a wireless sensor networks by injecting messages into
a network of motes without having the motes directly
connected to the PC. The basic functionality of Deluge relies
on a push-pull based algorithm where every mote periodically
spreads a message containing code images over the network. In
the following, we describe the basic operation of this protocol.

Deluge uses the 3-way handshake protocol consisting of 3
types of messages: DelugeAdvMsg, DelugeReqMsg and
DelugeDataMsg. The protocol starts with the PC injecting a
new image into the mote connected to the PC. Note that motes
communicate via the Zigbee protocol whereas PCs typically do
not have this capability. Hence, at least one mote must be
connected to a PC. The motes advertise themselves periodically
by giving information about the images they have with them.
For this, they advertise their profile to the neighboring motes
within the communication range using the message
DelugeAdvMsg. This message consists of the following
information: image number, version number of the image,
image description, the type of image currently present on the
mote and some meta-data along with it. When another mote,
say M1, receives this message from another mote M2, it sends
a DelugeAdvMsg message containing its profile information
back to M2. In addition, M1 compares its own profile with the
profile of M2 and checks whether it has an obsolete version of
the image. If it does, then it sends back what is called a
DelugeReqMsg message to the sender. This message contains
all the data requested by the requester and is sent only to the
mote that requested it and is not broadcast. The node receiving
the request message then sends the pages of the code image via
DelugeDataMsg messages.

The Deluge package provides a JAVA tool chain with a
number of commands for the PC to interact with the mote
connected to it. For example, by using the ping command:

java net.tinyos.tools.Deluge –ping

the PC can detect the version number of the image on the
node which is directly connected to it. The inject command:

java net.tinyos.tools.Deluge --inject --tosimage=<file> --
imgnum=<imgnum>

where tosimage is the image file to be injected and imgnum
is the image number to be injected into the network, allows the
PC to inject messages containing pages of the code image into
the network. Deluge also provides other commands such as
reset, erase and Dump.

Deluge provides a reliable mechanism to inject images into
the network and has been widely distributed and used.
However, it is designed to propagate the same code image to all
nodes in the network. Its applicability is restricted, however,
when the application is heterogeneous; that is, different nodes
in the network have different functionality and have to be
programmed with different images. A similar situation arises
when the application needs to be executed on a portion of the
network. In Deluge, however, the same image is delivered to
all motes in the network. It is possible to incorporate different
functionalities via Deluge, but it is wasteful in resources. For
example, one can incorporate different functionalities as part of
the same image, and have different nodes execute different
portions of the code image based on their functionality. This,
however, requires that the common image (containing all of the
functionalities) be delivered to all nodes. This increases the size
of the code image, and nodes will contain significant amount of
code that they may never execute. Each mote has 4 slots to
store images. It is also possible to store different images in each
of the slot corresponding to different functionalities. However,
in this case again, with Deluge, all images will get delivered to
all nodes, and maximum of four different images can be
propagated. This paper aims at address this problem by
designing and implementing a protocol where different images
can be injected into the network targeted for specific motes.
This is done in a manner where motes that do not need to be re-
programmed are not impacted. This paves way for the
possibility of having a large heterogeneous network where
different motes are used for different purposes, or different
portions of the network can execute different applications.

III. PROPOSED PROTOCOL

There were two approaches that we investigated in coming
up with the proposed solution. The first one involved making
changes to the Deluge protocol itself. The main idea in this
approach was to identify nodes where re-programming is not
required and selectively curtail the processing of messages on
these nodes. However, this required making changes to the
Deluge message structure to include the address of the target
mote to be programmed, and making changes the code for
processing of the messages. Since Deluge may be evolving
independently, we decided against this approach, as it would
not allow easy integration with future versions of Deluge.
Rather, we adopted a modular approach where we used Deluge
as a stand-alone module and superimposed control via layering
to achieve our goal.

54

Proc. of the Second International Conference on Advances in Computing, Control and Communication (CCN)

The proposed protocol operates in the two phases. During
the first phase, we create a path from the source node (the mote
connected to the PC) to the target node – the node to be re-
programmed. Our goal is for this to be the shortest path so that
messages travel with the minimum number of hops to the target
(destination) node. During the second phase, we start the
Deluge protocol. However, we use a superimposition technique
whereby the execution of Deluge is restricted only to the path
identified in the first phase.

In the following, we explain the two phases of our protocol
in more detail. In the first phase, an Explore message is sent by
the base station to its neighbors. This message contains a
‘Destination’ field that contains id of the destination mote that
has to be re-programmed. As the location of the mote is
unknown in the beginning, the message has to be broadcasted
throughout the network. The Explore message also has an
additional hop-count field, which is initially set to 0. Each mote
also maintain two variables: parent and min-count, where
parent is the id of the mote from which the Explore message
with the least hop-count so far has been received, and min-
count is that hop-count value. We will now explain the actions
which are carried out when a mode M1 receive an Explore
message from another mote M2. Mote M1 first checks whether
the message is from the base station. If so, then it compares the
hop-count in the message with min-count. If the hop-count in

the message is smaller, then the parent and min-count variables
are updated. Subsequently, M1 checks whether the
‘Destination’ field matches its own address. If yes, then M2
knows that it is the destination and will send back an ACK
message to the base station. However, if it is not the destination
and it has not already forwarded the message, then it forwards
the message to all of its neighbors with the hop-count increased
by one. For example, in Figure 2, the PC sends an Explore
(abbreviated as Exp) message with hop count of 0 and
destination as 3. When this message is received by mote 1, it is
forwarded to its neighbor 2 with hop count as 1.

Now, when the Explore message reaches the destination,
the destination node needs to respond to the base station with
an ACK message. However, before sending this message, the
destination mote waits for a certain period of time to allow
messages along different paths to arrive. Normally, messages
along the shortest path would arrive first; however, due to
network delays, this may not be the case. Rather than
developing an extensive (and more expensive) shortest path
algorithm, we simply allow the destination node to wait for a
timeout period. During this period, it keeps track of the node
from which the message with the least hop-count has been

received. After the timeout period, the ACK message is sent
by the destination to its parent node. In addition, it also sets
another variable participant_type to Destination. For example,
in Figure 2, the destination node 3 may receive the Explore
message from node 2 with hop-count 2 first. However, when it
receives the Explore message from 4, it see that that the
message has a lower hop-count which results in node 3
designating node 4 as its parent. Thus, the ACK message will
be sent by 3 to 4. When a mote receives the ACK message, it
sets the variable participant_type to Forwarder, and propagates
the message to its parent. Hence, the ACK message will
traverse a path along which the messages with least hop-count
were received. Finally, when the message reaches the base
station, it sets the participant_type to Source.

At the beginning of the second phase, we already have a
path established such that all nodes along this path have the
participant_type set to either Source, Forwarder or Destination,
whereas all other nodes has been variable undefined (default
value). For example, in Figure 2, we will have node 4 as
Forwarder, node 3 as Destination and the PC as Source. Nodes
1 and 2 will have the participant_type variable undefined. To
start the second phase, the Source node initiates the Deluge
protocol. We have written a nesC component that acts as a
filter (lower layer) for Deluge. When a message meant for the
Deluge protocol is received from the network, it is first
processed by this filter component. If the participant_type is
undefined for a node, then messages received for the Deluge
protocol are dropped by the filter component. As a result, we
now have the execution of the Deluge protocol restricted to the
just the direct path from the base station to the destination. This
avoids the propagation of the code image to other nodes in the
network. A common concern when restricting the execution of
an existing protocol is the possibility of introducing deadlocks.
In this case, we have shown that the restricted execution of
Deluge does not cause any deadlocks. For example, in Figure
2, only nodes 3 and 4, along with the PC, will be involved in
execution of Deluge. All other nodes will remain passive. In
the original Deluge protocol, all nodes in the network are
involved by default. Hence, in situations where the network is
very large but only one nearby node has to be programmed,
Deluge will involve all nodes, which is avoided by our
approach.

IV. PERFORMANCE EVALUATION

We implemented the protocol using JAVA and nesC, which
is an extension of C programming language designed for
programming motes. The program on the PC whose main
function is to interact with the mote connected directly to it has
been written in JAVA. The protocol was tested using TelosB
motes that have the following specifications:

• 250 kbps, high data rate radio.

• TI MSP430 microcontroller with 10kB RAM

The experiment was conducted with 3 different applications
from the TinyOS software distribution injected into the
network. These applications were chosen because of the
difference in the number of pages they contain. This allowed us
to have variation in testing based on the size of the messages
being injected. As we wanted to test the system with the lab

Figure 2: Illustration of the algorithm

55

Proc. of the Second International Conference on Advances in Computing, Control and Communication (CCN)

environment, we reduced the transmission range by setting the
RF Power to 2. Three types of scenarios were considered to
check the performance for the applications outline above:

Scenario 1: A network with 4 motes, all connected directly to
the Base Station resulting in hop-count of 1

Scenario2: A network with 8 eight motes in which the
destination mote is at hop count 2 (resulting in one
forwarding node)

Scenario3: A network with 8 eight motes in which the
destination mote is at hop count 3 (resulting in two
forwarding nodes)

Tables 1, 2 and 3 give the results for the three scenarios
respectively. We have configured the system to test the
performance of the original protocol as well as the proposed
protocol. For this, we have two versions of the inject command,
one in which we specify the id of the specific mote to be re-
programmed and the other in which we do not specify an id.
The difference is that when mote id is specified, our version of
the protocol with two phases is started; otherwise, the original

Deluge protocol is used. We set a timeout period of 10 minutes
so that if the reprogramming took longer than this time period,
we have stopped it. Since our goal is mainly to compare the
performances of the original and the proposed protocol (and
not scalability studies), this early stopping was sufficient to
illustrate our performance comparisons.

In Scenario 1, there are four nodes and all nodes are
connected directly to the base station. As can be seen in Table
1, we do not see much difference between the performances of
the two protocols. However, for the last case of the application
with more number of pages, the original protocol takes longer.
Note that in the original protocol, all nodes have to be
programmed whereas in the proposal protocol, only the single
targeted node is reprogramed.

In Scenario 2, we had eight motes in the network and the
target mote to be re-programmed is two hops away from the
base station. As can be seen, with the original protocol, it takes
more than 10 minutes for each of the applications. However,
since a single mote gets re-programmed in the proposed
protocol, we are able to program the node in less than 3

Table 1: Performance for Scenario 1

Table 3: Performance for Scenario 3

Table 2: Performance for Scenario 2

56

Proc. of the Second International Conference on Advances in Computing, Control and Communication (CCN)

minutes for each of the application. In our case, the execution
of the protocol is just restricted to the three nodes (base station,
forwarder and the destination). A similar observation is made
in Scenario 3 as shown in Table 3. In this case, the destination
node is three hops away. Hence, it takes proportionally longer
to reprogram as compared to Scenario 2. However, we
observed that the original algorithm still took more than 10
minutes. Note that if more nodes are added to the network
while keeping the distance of the destination remains the same,
the original protocol will take even longer to execute whereas
the execution time of the proposed protocol will remain the
same.

In addition to the time required to reprogram, the proposed
protocol also utilizes the available memory more effectively.
Each mote has four slots into which different images can be
stored. With the original Deluge protocol, there can be a
maximum of four application images deployed in the network.
However, with the proposed protocol, more than four
applications can be deployed in cases where different
applications involve different subset of nodes in the network.

Apart from performance testing, we have conducted
extensive testing to evaluate the correctness and advantages of
the protocol. For example, one such test case was the
following. In a network of 8 motes, we injected the Blink
application with the target node with id 8. At the same time, we
also started injection of the Oscilloscope application with target
node as 1. This was done to determine whether more than two
nodes can be programmed concurrently with different
applications, which is not possible in the original Deluge
protocol. To check the correctness of the protocol, we rebooted
nodes 1 and 8 to check that the Blink and OscillscopeRF
applications were deployed properly which we found was the
case. It is also important to note that if we are injecting a fresh
image to the same mote, we do not need to set the path again.

V. CONLCUSION

In this paper, we have presented a protocol that can be used
to reprogram specific nodes in a sensor network without
impacting other nodes in the system. The protocol is
appropriate for sensor network in which heterogeneous
applications have to be deployed – those in which different
nodes have different functionality requiring different code
images. This protocol uses the original Deluge protocol as a
stand-alone module and is compatible with any future
variations of Deluge. We have shown via extensive
experimentation that the proposed protocol can reprogram
specific nodes using less time and resources as compared to the
original protocol which reprograms all nodes in the systems by
default.

REFERENCES

[1] MEMSIC web site. http://www.memsic.com.

[2] I. Akyildiz, T. Melodia, and K. Chowdhury. A survey on
wireless multimedia sensor networks. Computer Networks
(Elsevier) Journal, 51(4), 2007

[3] Q. Wang, Y. Zhu, and L. Cheng. Reprogramming wireless
sensor networks: Challenges and approaches. IEEE
Network Magazine, 20(3):48–55, May-June 2006.

[4] Warren, Steve, Luke Nagl, Scott Schoenig, Balakumar
Krishnamurthi, Tammi Epp, Howard Erickson, David
Poole, Mark Spire, and Daniel Andresen. “Veterinary
Telemedicine: Wearable and Wireless Systems for Cattle
Health Assessment,” 10th Annual Meeting of the
American Telemedicine Association, Colorado
Convention Center, Denver, CO, April 17–20, 2005.
Poster presentation. Abstract published in Telemedicine
and e-Health, Vol. 11, No. 2, April 2005, pp. 264-265.

[5] V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler: A
reliable and energy efficient data dissemination service for
wireless embedded devices. In 26th IEEE Real-Time
Systems Symposium, 2005.

[6] G.Singh, S. Pujar and S. Das, Rate-based Data Propagation
in Sensor Networks, IEEE Wireless Communication and
Networking Conference, March 2004.

[7] J. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale.
In SenSys’04, Baltimore, Maryland, USA, Nov. 2004.

[8] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J.
George, S. George, L. Gu, T. He, S. Krishnamurthy, L.
Luo, S. Son, J. Stankovic, R. Stoleru, and A. Wood.
Envirotrack: Towards an environmental computing
paradigm for distributed sensor networks. In Proceedings
of ICDCS, 2003.

[9] A. Chlipala, J. Hui, and G. Tolle. Deluge: Data
dissemination for network reprogramming at scale. Class
Project,
http://www.cs.berkeley.edu/˜jwhui/research/deluge/cs262/
cs262a-report.pdf, Fall 2003.

[10] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
Accurate and scalable simulation of entire tinyos
applications. In Proceedings of the First ACM Conference
on Embedded Networked Sensor Systems (SenSys 2003).

[11] TinyOS website http://www.tinyos.net

57

