
79

Comparing Formal Specifications with Diagrammatic

Notations: A Case-Study Approach
[Kobamelo Moremedi

1
 and John Andrew van der Poll

2
]

† Abstract—Formal specification techniques, e.g. Z have been

applied in a variety of application areas to provide for clear and

unambiguous specifications. Diagrams on the other hand have

also been used in various areas and in software engineering they

could be used to add a visual component to software

specifications. It is plausible that diagrams may also be used to

reason in a semi-formal way about the properties of a

specification. In this paper we employ a case study approach to

determine the extent to which diagrammatic notations can

successfully be used to specify system properties. Comparisons on

the merits of a diagrammatic notation are presented towards the

end of the paper.

Keywords—case study, diagrammatic notation, formal

specification, Spider diagrams, Venn diagrams, Z

I. Introduction
Z is a formal language that can be used in software

engineering to construct clear and unambiguous specifications
[9], [2], [15], [16]. It is based on first-order logic and a
strongly-typed fragment of Zermelo-Fraenkel set theory [6] to
model the properties of a system. The formal text is normally
augmented with natural language prose to assist stakeholders
and users in deciphering the often terse mathematical notation.

Diagrams have been applied in various areas and in
software development they are used to specify and reason
(mostly semi formally) about the system [14], [12]. They have
also been applied in numerous examples such as specifying
failures in safety critical hardware, database search queries,
file system management, ontology representation and
statistical data representation [4], [5], [10], [13].

Kobamelo Moremedi1

School of Computing

University of South Africa

South Africa

John Andrew van der Poll2

Graduate School of Business Leadership (SBL)

University of South Africa
South Africa

†
 This work is based on the research supported in part by the National

Research Foundation of South Africa (Grant Number 78911). Any opinion,

finding and conclusion or recommendation expressed in this material is that of
the authors and the NRF does not accept any liability in this regard.

The purpose of this paper is to determine the merits of
diagrammatic notations with respect to the established
techniques of formal specifications, in particular the Z
specification language. Our notation is a semi-formal one that
could be used to deliver a specification that is accessible to a
wide range of users [3], [13], [12]. Formal specification
languages generally embody a fair amount of mathematics,
requiring rigorous training and experience in order to
comprehend the specification and gain the desired benefits.
Our case study is the specification of a symbol table [7] from
the arena of compiler construction.

 The layout of the paper follows: Section II briefly
introduces the case study to be used in our work, while various
operations on the state are presented in Section III. An
analysis of the merits of both specification techniques appears
in Section IV and the conclusion and directions for future
work in this area appear in Section V.

II. Symbol table
A symbol table (ST) maintains a set of symbols with

corresponding values. Each symbol in the table is associated
with a unique value. The usual operations performed on a
symbol table are to Add a symbol with corresponding value,
Look up the value associated with a given symbol, Replace the
value of a symbol, and Delete a symbol and its associated
value from the table.

The specification follows the Established Strategy for
constructing a Z spec [2], augmented by a set of enhanced
principles [17] to model the operations of a system. Three
basic types are defined for our specification:

[SYM, VAL, REPORT]

SYM represents the set of all symbols that may ever find
their way into the symbol table; VAL specifies the set of all
allowable values, and feedback to a user of the specification is
indicated by REPORT. In line with a design principle
proposed in [17], communication with the user of the
specification ought to be maximized. Subsequently, feedback
to the user is defined and consists of (called a data type
definition):

REPORT ::= OK | Symbol_not_present | Symbol_exists |
Symbol_not_found

Further user communication may be defined but is beyond
the scope of this paper.

Proc. of the Intl. Conf. on Advances In Bio-Informatics,Bio-Technology And Environmental Engineering-ABBE 2014.
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-009-5 doi: 10.15224/ 978-1-63248-009-5-104

80

III. States and operations

A. Abstract state
The Schema ST below denotes the abstract state of the

system. The relationship between SYM and VAL is modeled by
a partial function, st.

 ST

st : SYM ⇸ VAL

 The diagram in Fig. 1 below is a graphical representation
of the above abstract state. The name of the state and the basic
types are shown at the top of the diagram. The closed curves
called contours are used to represent sets [6], [11], [4]. The
arrow pointing from one circle to the next represents a
relation, in this case a partial function written below the curve,
with name st indicated above the curve. A preliminary version
of this notation was developed in [18].

st

VALSYM

SYM VAL

pf

ST

REPORT

Figure 1. The abstract state of ST.

B. Initial state
The initial state, Init_ST, of the symbol table system

appears below. Unless dictated otherwise (e.g. a schema
involving numeric components), it is customary to start with
empty sets as indicated: st′ = ∅. System components are
included above the short dividing line and relationships among
components are given below the line.

 Init_ST

ST

st′ = ∅

Fig. 2 captures Init_ST in a diagram. The shading of the
closed curve is used to denote that the set is empty, in line
with a particular version of the language of Venn diagrams
[19]. Our operation diagrams are divided into two parts. The
top half of the larger box is called a before diagram, while the
lower part is coined the after diagram.

Notice a slight deviation from the information in schema
Init_ST: In the formal notation we specify an empty function;
in the diagram we explicitly show that the domain of st' is
empty, leading to a proof obligation st′ = ∅ as far as the
diagram is concerned.

VALSYM

Init_ST

st′
SYM VAL

pf

st
SYM VAL

pf

Figure 2. Initial state of the symbol table.

C. Operations on the symbol table
The following schema specifies the operation to add a new

symbol in the symbol table. A precondition is that the symbol
to be added should not be already in the table.

 Add

ΔST

s? : SYM; v? : VAL

rep! : REPORT

s? ∉ dom st

st′ = st ∪ { s? ↦ v? } ⋀ rep! = OK

ΔST denotes a possible change in the after value of st (i.e.
st′). The operation receives the inputs s? and v?, denoting the
new symbol and its associated value respectively to be added
to the symbol table. Feedback to the user is indicated by rep!
(Input- and output variables are decorated by „?‟ and „!‟
respectively). For a correct Add operation, the new symbol
ought not to be in the symbol table already – s? ∉ dom st. The
after state contains the new symbol and its associated value.
The user is informed of a successful addition to the table.

The diagram in Fig. 3 represents the above Add operation
in appropriate before- and after diagram notation. A possible

Proc. of the Intl. Conf. on Advances In Bio-Informatics,Bio-Technology And Environmental Engineering-ABBE 2014.
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-009-5 doi: 10.15224/ 978-1-63248-009-5-104

81

state change is indicated in the top right hand corner of the
before diagram.

rep! = OK

st′

STΔVAL REPORTSYM

v?

dom(st)

SYM VAL

s?

REPORT

pf

Add

rep!

st

v?

dom(st)

SYM VAL

s?

REPORT

pf

Figure 3. The Add operation of ST.

In the before diagram, s? represents an input variable that
is not yet in the symbol table (indicated as being outside the
circle which represents the domain of st).

A (dot) in our diagrams represents the existence of an
element [6], [14]. The straight line which joins the two dots in
the before diagram indicates that it is immaterial whether v? is
already a value in the symbol table or not. Notice this
deviation, giving more information in the diagram than what is
available in the schema.

Strictly speaking the component rep! of type REPORT
does not exist in the before state (diagram); it only comes into
'existence' as part of the postcondition of the schema.
However, looking ahead at refinement into executable code,
variable rep! would presumably be a global variable in a
programming language and would therefore be declared, and
exist in a program before an operation (like Add) would be
invoked. Hence we made it part of our before diagram. Note
that the Z schema notation is not specifically clear about this
aspect.

The after diagram indicates that s? has 'moved' to be part
of the symbol table and is related to its value v? Appropriate
feedback is conveyed to the user of the specification.

The LookUp operation is used to determine the current
value associated with a symbol. ΞST indicates that the state of
the system remains invariant. Input to the operation is
represented by s? and output is specified by v! and rep!.

 LookUp

ΞST

s? : SYM; v! : VAL; rep! : REPORT

s? ∈ dom st

v! = st (s?) ⋀ rep! = OK

Fig. 4 is a diagrammatic representation of operation
LookUp.

VAL REPORTSYM

rep! = OK

st′

v!

dom(st)

SYM VAL

s?

REPORT

pf

ST

LookUp

rep!

st

v!

dom(st)

SYM VAL

s?

REPORT

pf

Ξ

Figure 4. The LookUp operation.

Variable s? ought to exist in the before diagram. Naturally
it is related to a value (according to our Add operation), but
such value is not known beforehand. The after diagram states
that s? is linked to its value v!. Feedback to the user is
specified.

The schema below describes an operation to replace the
value of a symbol already in the table. The Replace operation
may also change the state of the system just like in operation
Add, hence the notation ΔST. The symbol „⊕‟ in the predicate
is the overriding function, indicating that any existing value
associated with s? is replaced by v? The postcondition st′ = st
⊕ {s? ↦ v?} denotes that st′ is st overwritten by the symbol
associated with a new value.

 Replace

ΔST

s? : SYM; v? : VAL; rep! : REPORT

s? ∈ dom st

st′ = st ⊕ {s? ↦ v?} ⋀ rep! = OK

The diagram in Fig. 5 models the above Replace operation.

Proc. of the Intl. Conf. on Advances In Bio-Informatics,Bio-Technology And Environmental Engineering-ABBE 2014.
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-009-5 doi: 10.15224/ 978-1-63248-009-5-104

82

The symbol whose value is to be replaced ought to exist in
the table. As before, it is immaterial whether the associated
value is already present in the range of the function, or not.
Afterwards, the value of s? is known to be v?.

rep! = OK

st′

VAL REPORTSYM

v?

dom(st)

SYM VAL

s?

REPORT

pf

Replace

rep!

st

v?

dom(st)

SYM VAL

s?

REPORT

pf

STΔ

Figure 5. The Replace operation.

The symbol whose value is to be replaced ought to exist in
the table. As before, it is immaterial whether the associated
value is already present in the range of the function, or not.
Afterwards, the value of s? is v?.

A symbol may also be deleted from the symbol table. For a
correct deletion, we would require the symbol to exist in the
table beforehand. The following schema specifies the
operation to delete a symbol. The Delete operation introduces
the domain subtraction operator (⩤) [1], [9], [8], used to
exclude s? from the domain of st′. A proof obligation of Delete
is to show that s? does not exist in the after state of st.

 Delete

ΔST

s? : SYM; rep! : REPORT

s? ∈ dom st

st′ = {s?} ⩤ st ⋀ rep! = OK

The diagram below captures operation Delete. The after
diagram indicates that s? is not in the domain of st′. For the
sake of clarity, one could show that s? was related to some
value in its range and that such value may continue to exist, or
may not exist anymore (cf. the notation in figures 3 and 5) in
the range of st′. But, since schema Delete is silent about such
information, our diagram follows suit. One could argue that

the indication of such tautological information would indeed
strengthen the visual characteristics of the diagram.

rep! = OK

st′

STΔREPORTSYM

dom(st)

SYM

s?

REPORT

pf

Delete

VAL

rep!

st
dom(st)

SYM

s?

REPORT

pf

VAL

VAL

Figure 6. Delete operation.

So far in this paper we showed partial and correct versions
of our operations. If any of the preconditions are not satisfied,
error conditions arise together with the appropriate feedback to
the user. An example is NotPresent in conjunction with
LookUp.

 NotPresent

ΞST

s? : SYM; rep! : REPORT

s? ∉ dom st

rep! = Symbol_not_present

A diagrammatic specification of NotPresent is given in
Fig. 7. It shows that the symbol enquired about is not present
in the table (outside dom(st)). The condition prevails in the
after diagram, hence the no change in the system state.

Proc. of the Intl. Conf. on Advances In Bio-Informatics,Bio-Technology And Environmental Engineering-ABBE 2014.
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-009-5 doi: 10.15224/ 978-1-63248-009-5-104

83

rep! =

Symbol_not_

present

STREPORTSYM

REPORT

NotPresent

rep!

st
dom(st)

SYM VAL

s?

REPORT

pf

Ξ

st′
dom(st)

SYM VAL

s?

pf

VAL

Figure 7. Representation of schema NotPresent .

IV. Comparisons
A comparison of the differences and similarities between a

formal notation as embedded in Z, with diagrammatic
notations introduced in this paper appears in TABLE 1.

TABLE 1. COMPARISON OF FORMAL- AND DIAGRAMMATIC

NOTATIONS

Attribute
Specification Style

Formal specification Diagrammatic

Precision

A formal specification is

per definition precise
and unambiguous.

Diagrams may suffer from

imprecision and ambiguity.

Conciseness

Formal specifications

(e.g. Z) are generally

concise.

Diagrams tend to be

verbose and time

consuming to construct.

Clarity
A formal specification is
clear, but only to the

mathematically literate.

Diagrams are

comprehensible to non

mathematicians owing to
their visual character.

Level of

detail

Schema Init_ST specifies

st′ = ∅. Information
about the domain and

range are to be inferred

indirectly.

Fig. 2 which represents

schema Init_ST specifies
the domain of st′ to be

empty. This gives more

detail than the schema
predicate.

Additional

information

Schemas leave

tautological information

up to the user to
determine.

Tautological information

(e.g. v? ∊ ran st or not) is
shown explicitly (e.g. Fig.

3).

Variables in

precondition

Output variables in the

header of a schema

presumably exist as part
of the precondition.

Output variables are

explicitly shown to exist in

a before diagram.

V. Conclusions
In this paper, formal specifications as defined in Z were

compared to corresponding visual notations as captured by
Venn-like diagrams. A case study from the literature was used
as the vehicle of comparison. Formal specifications are

generally concise and precise, while the corresponding
diagrammatic notation is more verbose and takes up more
space as e.g. a Z schema. In some instances however, a
diagram may convey information more directly, e.g. when
specifying the domain of a function to be empty instead of
stating the function to be empty. Other aspects relate to
specifying tautological information and the presence of output
variables as part of the precondition of a schema or a before
diagram. A diagram may also be more easily interpreted than
the corresponding mathematical text.

Future work in this area may be pursued along a number of
lines. The feasibility of specifying diagrammatically more
comprehensive structures will be investigated. Examples
include arbitrary unions, bags (as defined in Z), etc. Part of
this development will be the specifying of schema calculus
operations as diagrams and the investigation of their space
complexities. For example, a robust operation of LookUp
could be RobustLookUp ≙ LookUp ⋁ NotPresent.
Investigating the scalability of our approach and tool support
are further items on the agenda.

References

[1] A. Diller, “ Z: An Introduction to Formal Methods,” Wiley, Chichester,

2nd ed., 1994.

[2] B. Potter, J. Sinclair, and D. Till, “An Introduction to Formal
Specification and Z,” Prentice Hall, Upper Saddle River, UK, 1996.

[3] F. Dau, “Types and tokens for logic with diagrams,” Lecture Notes in
Computer Science. vol. 3127/2004, pp. 62-93, 2004.

[4] G. Stapleton, “A Survey of Reasoning Systems Based on Euler
diagrams,” Proceedings of the First International Workshop on Euler
Diagrams, Brighton, UK, 1 June, vol. 134, pp. 127 – 151, 2005.

[5] G. Stapleton, P. Rodgers, J.Howse, and J. Taylor, “Properties of Euler
diagrams,” Layout of (Software) Engineering Diagrams, vol. 7, pp. 1 –
15, 2007.

[6] H. B. Enderton, “Elements of Set Theory,” Academic Press Inc, 1977.

[7] I Hayes, “Specification Case Studies,” Prentice Hall, UK, 1992.

[8] J. B. Wordsworth, “Software Development with Z,” Addison Wesley,
IBM United Kingdom, 1992.

[9] J. Bowen, “Formal Specification and Documentation Using Z – A case
study approach” C.A.R. Hoare. pp. 3 – 11, 2003.

[10] J. Gil and J. Howse, “Formalizing Spider Diagrams,” IEEE Symposium
on Visual Languages, pp. 130 – 137,1999.

[11] J. Howse, F. Molina, and J. Taylor, “Reasoning with Spider Diagrams,”
IEEE Symposium on Visual Languages, pp. 138 – 145, 1999.

[12] J. Howse, J. Taylor, and G. Stapleton, “Spider diagrams,” LMS Journal
of Computation and Mathematics, vol 2980/2004, pp. 154 – 194, 2005.

[13] J. Howse, J. Taylor, G. Stapleton, and T. Simpson, “ The Expressiveness
of Spider Diagrams Augmented with Constants,” vol 20, pp. 30 – 49,
2009.

[14] J. Howse, J. Taylor, G. Stapleton, and T. Simpson, “What Can Spider
Diagrams Say?;” In: Blackwell, A., Marriott, K. and Shimojima, A., eds.
Diagrammatic Representation and Inference: Third International
conference, Diagrams. Cambridge, pp. 112 – 127, 2004.

[15] J. M. Spivey, “Z Notation: A Reference Manual,” 2nd ed, Prentice Hall,
Oxford, 1992.

[16] J. Woodcock and J. Davies, “Using Specification, Refinement and
Proof,” Prentice-Hall, 1996.

[17] J. A. van der Poll and P. Kotze, “Enhancing the Established Strategy for
Constructing a Z Specification,” South African Computer Journal
(SACJ), Number 35, pp. 118 – 131, 2005.

Proc. of the Intl. Conf. on Advances In Bio-Informatics,Bio-Technology And Environmental Engineering-ABBE 2014.
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-009-5 doi: 10.15224/ 978-1-63248-009-5-104

84

[18] K. P. Moremedi and J. A. van der Poll, “Transforming Formal
Specification Constructs into Diagrammatic Notations,” The 3rd
International Conference on Model & Data Engineering,” (MEDI).
Lecture Notes in Computer Science (LNCS), No 8216, pp 212 – 224,
2013. ISBN 978-3-642-41365-0.

[19] S. Chow and F. Ruskey, “Drawing Area-Proportional Venn and Euler
diagrams,” Lecture Notes in Computer Science. vol. 2912/2004, pp. 466
– 477, 2004.

About the Authors:

Kobamelo Moremedi is busy with his MSc in Computer Science at the
University of South Africa. His research interests are in formal
specification, sem-formal specification techniques and combining
formal- and semi-formal notations.

John van der Poll is a Professor in Computing at the Graduate School for
Business Leadership (SBL) at the University of South Africa. His
research interests are in Automated Reasoning, Specification formalisms
and the application of Formal Methods in industrial and business
applications.

Diagrams have been applied in various

areas and in software development they

are used to specify and reason (mostly

semi formally) about the system. They

have also been applied in numerous

examples such as specifying failures in

safety critical hardware, database search

queries, file system management, ontology

representation and statistical data

representation.

Proc. of the Intl. Conf. on Advances In Bio-Informatics,Bio-Technology And Environmental Engineering-ABBE 2014.
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-009-5 doi: 10.15224/ 978-1-63248-009-5-104

