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† Abstract—Formal specification techniques, e.g. Z have been 

applied in a variety of application areas to provide for clear and 

unambiguous specifications. Diagrams on the other hand have 

also been used in various areas and in software engineering they 

could be used to add a visual component to software 

specifications. It is plausible that diagrams may also be used to 

reason in a semi-formal way about the properties of a 

specification. In this paper we employ a case study approach to 

determine the extent to which diagrammatic notations can 

successfully be used to specify system properties. Comparisons on 

the merits of a diagrammatic notation are presented towards the 

end of the paper. 
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I.  Introduction 
Z is a formal language that can be used in software 

engineering to construct clear and unambiguous specifications 
[9], [2], [15], [16]. It is based on first-order logic and a 
strongly-typed fragment of Zermelo-Fraenkel set theory [6] to 
model the properties of a system. The formal text is normally 
augmented with natural language prose to assist stakeholders 
and users in deciphering the often terse mathematical notation.  

Diagrams have been applied in various areas and in 
software development they are used to specify and reason 
(mostly semi formally) about the system [14], [12]. They have 
also been applied in numerous examples such as specifying 
failures in safety critical hardware, database search queries, 
file system management, ontology representation and 
statistical data representation [4], [5], [10], [13].  
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The purpose of this paper is to determine the merits of 
diagrammatic notations with respect to the established 
techniques of formal specifications, in particular the Z 
specification language. Our notation is a semi-formal one that 
could be used to deliver a specification that is accessible to a 
wide range of users [3], [13], [12]. Formal specification 
languages generally embody a fair amount of mathematics, 
requiring rigorous training and experience in order to 
comprehend the specification and gain the desired benefits. 
Our case study is the specification of a symbol table [7] from 
the arena of compiler construction.  

 The layout of the paper follows: Section II briefly 
introduces the case study to be used in our work, while various 
operations on the state are presented in Section III. An 
analysis of the merits of both specification techniques appears 
in Section IV and the conclusion and directions for future 
work in this area appear in Section V. 

II. Symbol table 
A symbol table (ST) maintains a set of symbols with 

corresponding values. Each symbol in the table is associated 
with a unique value. The usual operations performed on a 
symbol table are to Add a symbol with corresponding value, 
Look up the value associated with a given symbol, Replace the 
value of a symbol, and Delete a symbol and its associated 
value from the table. 

The specification follows the Established Strategy for 
constructing a Z spec [2], augmented by a set of enhanced 
principles [17] to model the operations of a system. Three 
basic types are defined for our specification:  

[SYM, VAL, REPORT] 

SYM represents the set of all symbols that may ever find 
their way into the symbol table; VAL specifies the set of all 
allowable values, and feedback to a user of the specification is 
indicated by REPORT. In line with a design principle 
proposed in [17], communication with the user of the 
specification ought to be maximized. Subsequently, feedback 
to the user is defined and consists of (called a data type 
definition): 

REPORT  ::= OK | Symbol_not_present | Symbol_exists | 
Symbol_not_found 

Further user communication may be defined but is beyond 
the scope of this paper. 
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III. States and operations 

A. Abstract state 
The Schema ST below denotes the abstract state of the 

system. The relationship between SYM and VAL is modeled by 
a partial function, st. 

 ST  

st : SYM ⇸ VAL 
 

 The diagram in Fig. 1 below is a graphical representation 
of the above abstract state. The name of the state and the basic 
types are shown at the top of the diagram. The closed curves 
called contours are used to represent sets [6], [11], [4]. The 
arrow pointing from one circle to the next represents a 
relation, in this case a partial function written below the curve, 
with name st indicated above the curve. A preliminary version 
of this notation was developed in [18].  

st

VALSYM

SYM VAL

pf

ST

REPORT

 

Figure 1.  The  abstract state of ST. 

B. Initial state 
The initial state, Init_ST, of the symbol table system 

appears below. Unless dictated otherwise (e.g. a schema 
involving numeric components), it is customary to start with 
empty sets as indicated: st′ = ∅. System components are 
included above the short dividing line and relationships among 
components are given below the line. 

  Init_ST  

ST 
 

st′ = ∅ 
 

Fig. 2 captures Init_ST in a diagram. The shading of the 
closed curve is used to denote that the set is empty, in line 
with a particular version of the language of Venn diagrams 
[19]. Our operation diagrams are divided into two parts. The 
top half of the larger box is called a before diagram, while the 
lower part is coined the after diagram.  

Notice a slight deviation from the information in schema 
Init_ST: In the formal notation we specify an empty function; 
in the diagram we explicitly show that the domain of st' is 
empty, leading to a proof obligation st′ = ∅ as far as the 
diagram is concerned. 

 

VALSYM

Init_ST

st′
SYM VAL

pf
 

st
SYM VAL

pf

 

Figure 2.  Initial state of the symbol table. 

C. Operations on the symbol table 
The following schema specifies the operation to add a new 

symbol in the symbol table. A precondition is that the symbol 
to be added should not be already in the table. 

 Add  

ΔST 

s? : SYM; v? : VAL 

rep! : REPORT 
 

s? ∉ dom st  

st′ = st ∪ { s? ↦ v? } ⋀ rep! = OK 
 

ΔST denotes a possible change in the after value of st (i.e. 
st′). The operation receives the inputs s? and v?, denoting the 
new symbol and its associated value respectively to be added 
to the symbol table. Feedback to the user is indicated by rep! 
(Input- and output variables are decorated by „?‟ and „!‟ 
respectively). For a correct Add operation, the new symbol 
ought not to be in the symbol table already – s? ∉ dom st. The 
after state contains the new symbol and its associated value. 
The user is informed of a successful addition to the table. 

The diagram in Fig. 3 represents the above Add operation 
in appropriate before- and after diagram notation. A possible 
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state change is indicated in the top right hand corner of the 
before diagram. 

rep! = OK

st′

STΔVAL REPORTSYM

v?

dom(st)

SYM VAL

s?

REPORT

pf

Add

rep!

st

v?

dom(st)

SYM VAL

s?

REPORT

pf

 

Figure 3.  The Add operation of ST. 

In the before diagram, s? represents an input variable that 
is not yet in the symbol table (indicated as being outside the 
circle which represents the domain of st).  

A  (dot) in our diagrams represents the existence of an 
element [6], [14]. The straight line which joins the two dots in 
the before diagram indicates that it is immaterial whether v? is 
already a value in the symbol table or not. Notice this 
deviation, giving more information in the diagram than what is 
available in the schema.  

Strictly speaking the component rep! of type REPORT 
does not exist in the before state (diagram); it only comes into 
'existence' as part of the postcondition of the schema. 
However, looking ahead at refinement into executable code, 
variable rep! would presumably be a global variable in a 
programming language and would therefore be declared, and 
exist in a program before an operation (like Add) would be 
invoked. Hence we made it part of our before diagram. Note 
that the Z schema notation is not specifically clear about this 
aspect.  

The after diagram indicates that s? has 'moved' to be part 
of the symbol table and is related to its value v? Appropriate 
feedback is conveyed to the user of the specification. 

The LookUp operation is used to determine the current 
value associated with a symbol. ΞST indicates that the state of 
the system remains invariant. Input to the operation is 
represented by s? and output is specified by v! and rep!.  

 LookUp  

ΞST 

s? : SYM; v! : VAL; rep! : REPORT 
 

s? ∈ dom st  

v! = st (s?) ⋀ rep! = OK 
 

Fig. 4 is a diagrammatic representation of operation 
LookUp. 

VAL REPORTSYM

rep! = OK

st′

v!

dom(st)

SYM VAL

s?

REPORT

pf

ST

LookUp

rep!

st

v!

dom(st)

SYM VAL

s?

REPORT

pf

Ξ

 

Figure 4.  The LookUp operation. 

Variable s? ought to exist in the before diagram. Naturally 
it is related to a value (according to our Add operation), but 
such value is not known beforehand. The after diagram states 
that s? is linked to its value v!. Feedback to the user is 
specified. 

The schema below describes an operation to replace the 
value of a symbol already in the table. The Replace operation 
may also change the state of the system just like in operation 
Add, hence the notation ΔST. The symbol „⊕‟ in the predicate 
is the overriding function, indicating that any existing value 
associated with s? is replaced by v? The postcondition st′ = st 
⊕ {s? ↦ v?} denotes that st′ is st overwritten by the symbol 
associated with a new value. 

 Replace  

ΔST 

s? : SYM; v? : VAL; rep! : REPORT 
 

s? ∈ dom st 

st′ = st ⊕ {s? ↦ v?} ⋀ rep! = OK 
 

The diagram in Fig. 5 models the above Replace operation.  
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The symbol whose value is to be replaced ought to exist in 
the table. As before, it is immaterial whether the associated 
value is already present in the range of the function, or not. 
Afterwards, the value of s? is known to be v?.  

 

rep! = OK

st′

VAL REPORTSYM

v?

dom(st)

SYM VAL

s?

REPORT

pf

Replace

rep!

st

v?

dom(st)

SYM VAL

s?

REPORT

pf

STΔ

 

Figure 5.  The Replace operation.  

The symbol whose value is to be replaced ought to exist in 
the table. As before, it is immaterial whether the associated 
value is already present in the range of the function, or not. 
Afterwards, the value of s? is v?.  

A symbol may also be deleted from the symbol table. For a 
correct deletion, we would require the symbol to exist in the 
table beforehand. The following schema specifies the 
operation to delete a symbol. The Delete operation introduces 
the domain subtraction operator (⩤) [1], [9], [8], used to 
exclude s? from the domain of st′. A proof obligation of Delete 
is to show that s? does not exist in the after state of st.  

 Delete  

ΔST 

s? : SYM; rep! : REPORT 
 

s? ∈ dom st 

st′ = {s?} ⩤ st ⋀ rep! = OK 
 

The diagram below captures operation Delete. The after 
diagram indicates that s? is not in the domain of st′. For the 
sake of clarity, one could show that s? was related to some 
value in its range and that such value may continue to exist, or 
may not exist anymore (cf. the notation in figures 3 and 5) in 
the range of st′. But, since schema Delete is silent about such 
information, our diagram follows suit. One could argue that 

the indication of such tautological information would indeed 
strengthen the visual characteristics of the diagram. 

rep! = OK

st′

STΔREPORTSYM

dom(st)

SYM

s?

REPORT

pf

Delete

VAL

rep! 

st
dom(st)

SYM

s?

REPORT

pf

VAL

VAL

 

Figure 6.  Delete operation.  

So far in this paper we showed partial and correct versions 
of our operations. If any of the preconditions are not satisfied, 
error conditions arise together with the appropriate feedback to 
the user. An example is NotPresent in conjunction with 
LookUp.  

 NotPresent  

ΞST 

s? : SYM; rep! : REPORT 
 

s? ∉ dom st 

rep! = Symbol_not_present 
 

A diagrammatic specification of NotPresent is given in 
Fig. 7. It shows that the symbol enquired about is not present 
in the table (outside dom(st)). The condition prevails in the 
after diagram, hence the no change in the system state. 
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rep! = 

Symbol_not_

present

STREPORTSYM

REPORT

NotPresent

rep!

st
dom(st)

SYM VAL

s?

REPORT

pf

Ξ

st′
dom(st)

SYM VAL

s?

pf

VAL

 

Figure 7.  Representation of schema NotPresent .  

IV. Comparisons 
A comparison of the differences and similarities between a 

formal notation as embedded in Z, with diagrammatic 
notations introduced in this paper appears in TABLE 1.  

TABLE 1. COMPARISON OF FORMAL- AND DIAGRAMMATIC 

NOTATIONS 

Attribute 
Specification Style 

Formal specification Diagrammatic 

Precision 

A formal specification is 

per definition precise 
and unambiguous. 

Diagrams may suffer from 

imprecision and ambiguity. 

Conciseness 

Formal specifications 

(e.g. Z) are generally 

concise. 

Diagrams tend to be 

verbose and time 

consuming to construct. 

Clarity 
A formal specification is 
clear, but only to the 

mathematically literate. 

Diagrams are 

comprehensible to non 

mathematicians owing to 
their visual character. 

Level of 

detail 

Schema Init_ST specifies 

st′ = ∅. Information 
about the domain and 

range are to be inferred 

indirectly. 

Fig. 2 which represents 

schema Init_ST specifies 
the domain of st′ to be 

empty. This gives more 

detail than the schema 
predicate. 

Additional 

information 

Schemas leave 

tautological information 

up to the user to 
determine. 

Tautological information 

(e.g. v? ∊ ran st or not) is 
shown explicitly (e.g. Fig. 

3). 

Variables in 

precondition 

Output variables in the 

header of a schema 

presumably exist as part 
of the precondition. 

Output variables are 

explicitly shown to exist in 

a before diagram. 

V. Conclusions  
In this paper, formal specifications as defined in Z were 

compared to corresponding visual notations as captured by 
Venn-like diagrams. A case study from the literature was used 
as the vehicle of comparison. Formal specifications are 

generally concise and precise, while the corresponding 
diagrammatic notation is more verbose and takes up more 
space as e.g. a Z schema. In some instances however, a 
diagram may convey information more directly, e.g. when 
specifying the domain of a function to be empty instead of 
stating the function to be empty. Other aspects relate to 
specifying tautological information and the presence of output 
variables as part of the precondition of a schema or a before 
diagram. A diagram may also be more easily interpreted than 
the corresponding mathematical text.  

Future work in this area may be pursued along a number of 
lines. The feasibility of specifying diagrammatically more 
comprehensive structures will be investigated. Examples 
include arbitrary unions, bags (as defined in Z), etc. Part of 
this development will be the specifying of schema calculus 
operations as diagrams and the investigation of their space 
complexities. For example, a robust operation of LookUp 
could be RobustLookUp ≙ LookUp ⋁ NotPresent. 
Investigating the scalability of our approach and tool support 
are further items on the agenda. 
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Diagrams have been applied in various 

areas and in software development they 

are used to specify and reason (mostly 

semi formally) about the system. They 

have also been applied in numerous 

examples such as specifying failures in 

safety critical hardware, database search 

queries, file system management, ontology 

representation and statistical data 

representation. 
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