
Phrase Matching in (s,c) Dense Code Compressed Files

Jagadish Dharanikota
Department of Computer Science & Engineering
Motilal Nehru National Institute of Technology

Allahabad, India.
E-mail: jagadishcse520@gmail.com

Suneeta Agarwal
Department of Computer Science & Engineering
Motilal Nehru National Institute of Technology

Allahabad, India.
E-mail: suneeta@mnnit.ac.in

Abstract— Due to increase in the data size and limited
network bandwidths there is need of compressing the data
files. This compression technique saves the memory and data
can be transferred faster over the network. Pattern matching
on compressed files is one of the requirements for Information
retrieval applications. Files compressed using (s,c) dense code
compression helps significantly to reduce the time for
searching as it avoids the decompression of the compressed file
for finding the pattern.

In this paper we propose an approach for phrase
matching in the compressed files by modifying standard string
matching algorithms like horspool and Sunday algorithm. This
phrase matching can be used by search engines in relevant
document retrieval for the given query. Pattern matching on
(s, c) dense code compressed files had lots of advantages along
with better compression ratios when compared to other
standard compression algorithms. Searching the text on the
compressed files is up to 8 times faster when compared to
uncompressed file [1]. Here we propose a new searching
technique for phrase searching in (s,c) dense code file. We
apply frequency based codeword matching searching using
standard algorithms with proper modification in them. We
show that our proposed searching technique is faster than
straight forward techniques.

Keywords- Frequency based codeword searching; Phrase
Matching; (s,c) Dense Code.

I. INTRODUCTION

The Problem pattern matching in compressed files can be
defined as: given a pattern P and the text T where the
pattern should be found in compressed text C which is
obtained by some compression algorithm (here in this paper
(s,c) dense codes), finding all the occurrence of P in C.
The naïve approach to doing this pattern matching is to
decompress the compressed text C and finding all the
occurrences of the pattern P in the decompressed text. This
is not an efficient solution due to unnecessary processing
time in decompressing the text to find the pattern. The CPU
processing speed is increasing fast when compared to I/O
seek time. In order to reduce this I/O seek time a mechanism
for finding the pattern in compressed file should be there. In
this paper we are performing the phrase matching on (s,c)
Dense Code compressed files. (s,c) Dense Code gives a
better compression ratio along with direct Barry-Moore type
search on the compressed text [2]. In this paper we discuss

the different byte oriented compression techniques in
section 2. In the section 3 we mentioned pattern matching in
compressed files. In section 4 we provide our approach to
find the phrase in the compressed files using pattern
matching algorithms with modification in them and had
done an analysis. Finally in section 5 we had shown our
experimental results and proved that our proposed technique
is faster than the straight forward pattern matching.

II. BYTE ORIENTED COMPRESSION

The Huffman coding is a bit oriented coding applied to
the characters. It gives the optimal prefix codes. Prefix
codes are codes that ensure one code is not a prefix of the
other. The compression is done taking characters as source
symbols and assigning bit codes to characters [3]. The
decompression is slower and searching is a bit difficult on
bit oriented coding. To overcome these semistatic statistical
methods came into existence taking words as the source
symbols for compression [4]. The use of byte codes taking
words as the source symbols give better compression ratio
[5].
The Plain Huffman codes are nothing but Huffman with
source symbols as words and targets symbols are bytes.
Tagged Huffman codes are one which uses the highest bit of
each byte to notify the start of each codeword. So in a byte
only 7 bits are useful for codeword and 1 flag bit is used to
notify the starting of the codeword. The bit that signals
make these codes a prefix code.
Brisaboa et al. made some modification to the tagged
Huffman coding and named them as end tagged dense
codes. In end tagged dense codes the signal bit is used to
represent the end of the codeword instead of starting. This
bit ensures that the codeword formed is prefix code words.
So codes formed here are static which use only 7 bits.
Brisaboa et al. realized that instead of making these codes
static fixed to 128 the stoppers and continuers can be
dynamic and can be decided based on the probability
occurrences of the source symbols. These codes are named
as (s,c) dense codes [6]. In this coding mechanism the
source symbols are assigned codeword in such a manner
that the stopper is followed by continuer. The source
symbols (words here) are sorted out based on their
frequencies and the words with more frequency are assigned
to smaller byte codeword and less frequent words are

Proc. of the Second International Conference on Advances in Computing, Control and Communication (CCN)
Editor In Chief Dr. R. K. Singh.
Copyright © 2012 Universal Association of Computer and Electronics Engineers. All rights reserved.
ISBN: 978-981-07-2579-2 doi:10.3850/978-981-07-2579-2 CCN-451

49

Proc. of the Second International Conference on Advances in Computing, Control and Communication (CCN)

Valid Match

Byte Value before match < C
False Match

assigned to larger byte codeword. Let b be the number of
bits used for codeword then s+c = 2b. Hence (2b-1, 2b-1) are
nothing but end tagged dense codes.
 The (s,c) values vary with the size of the
vocabulary and word frequency. The compression ratio of
the (s,c) dense codes depends on the (s,c) values. The
optimal (s,c) values can be found using the algorithm given
in [5].
The encoding process of (s,c) dense codes is as follows

• Words are sorted out in the descending order of
their frequencies.

• The first s frequent words in the vocabulary are
assigned with one byte codewords starting from c
to s+c-1.

• Next s to s+sc-1 words in the vocabulary are
assigned with two byte codewords. First byte in the
range (0, c-1) and the second byte in the range (c to
s+c-1).

• Similarly follows the three byte codewords.

These byte oriented codeword assignments are easier to
assign and there is no need to store the codeword
corresponding to the word. These codewords are can be
generated dynamically using the index of the word. The
encoding and decoding are faster with the byte oriented
coding [6]. The most important benefit with bytecodes is
they provide direct search on the compressed files. The
Boyer-more type of search can be easily performed which
skips certain byte codes while searching.

III. RELATED WORK

The pattern matching in compressed files is one of the
key benefits of byte oriented compressed schemes. In these
the byte compressed files the Boyer-Moore type search can
be applied direct with modification in them [2]. The change
that should be added is to identify the false match of a code
word in (s,c) dense codes. When a match is found the
previous codeword of the match should be inspected in
order to check it is suffix of other codeword or exact
codeword match. If previous byte of the match is checked
and if it is a continuer then it is a false match. If it is a
stopper then the match is correct match for the given
pattern.

While matching the pattern we should ensure that the
following situations don’t occur:

i) Given pattern P matches the prefix of some other
codeword.

ii) Pattern P matches the suffix of some other
codeword.

iii) Pattern P is formed by the combination of two
codewords.

In prefix codewords case (i) doesn’t occur. But in plain
Huffman there is a chance of a case (ii) and (iii) to occur. In
(s,c) dense code compressed file case (iii) doesn’t occur but
there is a chance of a case (ii) to occur.
Consider (s,c) dense codes byte encoding scheme with b=8
bits and (s,c) = (160,96).Let us consider some pattern P and
Compressed text C. The process of matching the pattern
over the compressed text is shown in Fig 1.

P: 00000001 11100110

C: 00000100 11110000 00000000 00000001 11100110

00000000 11110001 00000001 11100110

Figure 1. Pattern matching in compressed file.

IV. PROPOSED METHOD

A. Phrase Matching in Compressed File

Phrase matching is important in an information retrieval
system to give the related results. This matching should be
efficient in order to give better results in minimum time.
Matching the given phrase in the compressed file is one of
the challenges. Semi static codes explore this benefit of
direct matching in the compressed files. Due to its word
based byte encoding scheme it’s easy to make a direct
search of any pattern, substring or phrase in the compressed
text.
Phrase matching in (s,c) dense code compressed files can be
performed in two ways.

i) Straight forward codeword searching.
ii) Frequency based codeword searching.

i) Straight forward codeword searching

In the straight forward method the codeword for the
phrase is to be framed as shown in Fig 2.

After obtaining the codeword of the phrase it is searched
using some conventional pattern matching algorithm. Using
this conventional pattern matching algorithm like Horspool,
Sunday for codewords is same as for character but with
proper modification is done to fit to byte codes.

ii) Frequency based codeword searching

50

Proc. of the Second International Conference on Advances in Computing, Control and Communication (CCN)

In frequency based codeword searching the codeword
for the phrase is to be framed as shown in Fig 2. After
getting the codeword of the phrase they are maintained in
low to high frequency order. In the searching algorithm
codeword of the phrase is searched based on the frequency.
First the codeword with less frequency are searched within
the pattern aligned with the coded text window. If the
codeword is matched with its corresponding position in the
coded text window we will match the next lower frequent
codeword. If all the codewords of the phrase are matched
with the coded text window then the phrase is occurring in
the file. All the occurrences of the phrase are reported.

Figure 2. Flow chart for codeword searching

B. Analysis

We analyzed that considering the frequency of the
codewords rather than straight forward searching reduces
the comparisons. In frequency based searching because we
are searching in the aligned window based on word
frequency the probability of the codeword matching is less
when compared to left to right or right to left comparison of
the window. We can terminate the pattern aligned window
comparison loop immediately after a miss match and can
decide the skip distance. Hence the number of comparisons
in the aligned window is reduced. So the overall
comparisons in the frequency based searching are less than
straight forward searching. This reduces the search time in
frequency based method than straight forward method.

When the number of phrases to be searched is less then
there will not be much difference in the performance of both
the searching techniques. If the number of phrases is more,
then frequency based searching gives better results.

In both the methods the phrase should not be too small
or too big to obtain the maximum skips. If the phrase is too
small then the number of skips will be less. Even if the
phrase is too big then the codeword of one word may be the
suffix of the other codeword reducing the skip distance.

The best case occurs when no codeword of the word in
the phrase is a suffix of the other codeword. The first match
of the codeword doesn’t occur at all in the pattern also gives
best case. There is at least one word in the phrase whose
frequency is very less to make the loop terminate
immediately from the matching window. These cases give
the maximum number of skips with few comparisons. The
worst case occurs when codewords of the words in the
phrase are suffix of other codewords and the codeword in
text appears in the pattern. This reduces skip distance of the
pattern.

Let the length of the encoded text be ‘n’ and ‘m’ be the
length of the codeword of the phrase. Applying the naïve
pattern matching algorithm for the given phrase takes O(mn)
search time complexity and shifts the window exactly by 1
position.

Straight forward horspool algorithm takes O(m+σ) time
for a preprocessing stage where σ is the space required to
store the bad character shift array. It takes O(σ) space
complexity and O(mn) search time complexity [7]. In case of
frequency based horspool algorithm the space complexity is
O(σ +α) where α is the space required to store the indexes of
the codewords of the phrase in their frequency order.

The Straight forward Sunday algorithm takes O(m+σ)
time for a preprocessing stage where σ is the space required
to store the bad character shift array. It takes O(σ) space
complexity and O(mn) search time complexity [8]. In case of
frequency based Sunday algorithm the space complexity is
O(σ +α) where α is the space required to store the indexes of
the codewords of the phrase in their frequency order. The
time complexity remains same as the straight forward
approach. A Sunday algorithm looks at the codeword next to
the encoded text window as this is the codeword to be
compared next so it gives bit more shifts [8].

Parse the given phrase into words.

Find the hash of the words and find them
in hash table.

If all the words
of phrase exist

in the hash table

Frame the codeword of the phase based
on the index.

Phrase doesn’t exist in
the file.

Apply the relevant codeword searching
algorithm.

Display the phrase locations.

Stop

Load the Hash Table with Vocabulary.

Start

51

Proc. of the Second International Conference on Advances in Computing, Control and Communication (CCN)

V. EXPERIMENTAL RESULTS

In this section we present the experimental results on
phrase searching in (s,c) dense code compressed files. We
used some text collection from the Calgary Corpus1

(CALGARY) to perform compression and phrase matching
in them. We compressed the files using (s,c)-Dense
Code(SCDC) with bytes as the target symbols (b=8). We
performed searching for phrase on compressed files using
naïve pattern matching algorithm, straight forward horspool
algorithm, frequency based horspool algorithm, straight
forward sunday algorithm and frequency based sunday
algorithm with proper modification on them. The difference
between the performances of straight forward horspool and
frequency based horspool are significantly less when
compared to the difference in performance between straight
forward Sunday algorithm and frequency based Sunday
algorithm. We performed the search for different number of
phrases and presented the results.

Figure 3. Comparison of time for phrase searching applying different
algorithms.

VI. CONCLUSION

We have presented an approach for phrase matching in
(s,c) dense code compressed files. The approach presented
in this paper is using the statistics of the given phrase and
based on that the search is performed. So our approach is
having an advantage of reduced comparisons and faster
search when compared to the straight forward search. We
have presented the space and time complexity requirements
of the proposed approach. From the experimental results it
can be seen that our proposed “Frequency based Sunday
algorithm” performs better than other algorithms.

Based on our analysis we have given the best and worst
cases in phrase matching for a given phrase. We had shown
the as the number of phrases increase, the frequency based
searching gives better results than straight forward
searching.

REFERENCES

[1] Turpin, A. and Moffat, A., “Fast file search using text compression”,
Proceedings of the 20th Australian Computer Science Conference, pp.
1–8, 1997.

[2] Brisaboa, N., Farina, A., Navarro, G., and Parama, J.,”Lightweight
natural language text compression”, Infor. Retriev. 10, 1, pp.1-33,
2007.

[3] Huffman, D. A., “A method for the construction of minimum
redundancy codes”, Proceedings of the Institute of Electronics and
Radio Engineers (IRE) 40(9), pp.1098–1101, 1952.

[4] Moffat, A.,”Word-based text compression”, Software - Practice and
Experience 19(2), pp.185–198,1989.

[5] E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates, “Fast
and flexible word searching on compressed text”, ACM Transactions
on Information Systems, 18(2),pp.113–139, 2000.

[6] Brisaboa, N., Fari˜na, A., Navarro, G. and Esteller, M., “(s,c)-dense
coding: An optimized compression code for natural language text
databases”, Proceedings of the 10th International Symposium on
String Processing and Information Retrieval (SPIRE’03), LNCS
2857, Springer-Verlag, pp. 122–136, 2003a.

[7] Horspool, R. N., “Practical fast searching in strings”, Software
Practice and Experience 10(6), pp.501–506, 1980.

[8] SUNDAY D.M., A very fast substring search algorithm,
Communications of the ACM. 33(8), pp.132-142, 1990.

1 ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.

52

