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Abstract— Extraction of relevant information from remotely 

sensed imagery is essential for the identification of changes in the 

earth’s environment. Methods for converting the data collected at 

the sensor to surface reflectance have been under constant 

improvement since the beginning of the Landsat program. The 

time and effort needed to perform this task has recently been 

eliminated with the publication of the USGS Landsat CDR. This 

paper compares the data available from the USGS with a simple 

dark object subtraction method for determining surface 

reflectance. Our goal is to determine if the USGS data set is 

comparable to previous methods. We find that the USGS data set 

is strongly correlated with the simpler DOS method. While clear 

differences in absolute surface reflectance are observed in the 

visible and near-IR bands, the trends in the data over time are 

consistent. This suggests that previous trend studies using the 

simpler methods do not need to be revisited using the newer data. 

The findings also suggest that researchers no longer need to 

perform the labor intensive step of converting raw data to 

surface reflectance by making use of the USGS surface 

reflectance data instead. 
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I.  Introduction 
Understanding changes in Earth’s environment is 

becoming ever more critical as the pace of those changes 
increases due to factors including anthropogenic influence on 
global mass and energy balances.  
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Spaceborne instruments, that can effectively monitor the 
biosphere, have become essential tools to enhance our ability 
to adapt to future environmental conditions brought about by 
complex processes such as climate change and population 
growth (Chung et al., 2010). The Landsat program has been 
indispensable in the analysis of temporal changes in the 
environment. Landsat earth observation sensors have been in 
continuous orbit since 1972, providing an unparalleled 
opportunity to observe changes to the environment and to 
develop analytical techniques that can relate the Landsat 
remote sensing data to natural and anthropogenic processes 
responsible for the observed changes. Examples of how this 
data is applied to ecological science include: analysis of net 
primary productivity (NPP) and species richness; monitoring 
of climate variables such as temperature, precipitation, and 
soil moisture; determining species distributions and habitat 
structure including topography (Turner et al., 2003).  

The ecological response to elevated temperatures and CO2 
levels is complex and will be affected by many factors 
including water and other nutrient resource availability. In 
cold alpine regions where water availability is not limiting, 
higher temperatures are expected to increase the habitable 
zones for several species, allowing for upslope migration and 
increased vegetative cover. Higher temperatures combined 
with increased atmospheric CO2 levels will increase 
photosynthesis resulting in increased biomass; provided other 
essential resources are not limited (Skre and Naess, 1999). 
Conversely, where water is limited, higher temperatures will 
increase plant stress resulting in reduced vegetative cover 
(Chmura et al., 2011). 

In order to use the wealth of information contained in the 
Landsat archive database, methods for converting the raw 
digital numbers recorded by the sensor to actual surface 
reflectance must be used. The common methodology for this 
conversion is to first convert the digital numbers to the at 
sensor radiance value, followed by conversion to Top-of-
Atmosphere (TOA) reflectance and finally applying an 
atmospheric correction to determine the surface reflectance. 

There are many atmospheric correction procedures that 
have been developed over the last three decades, and with the 
addition of atmospheric profiling remote sensors, many 
atmospheric correction algorithms are now available that 
include actual upwelling and downwelling radiance values in 
the analysis. However, in order to take advantage of the older 
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Landsat imagery (< 2000), other methods, typically imaged 
based, are used. One of the most common atmospheric 
correction methods is known as “Dark Object Subtraction or 
DOS”. This method is based on the assumption that radiance 
seen at the satellite for “dark” pixels (i.e. deep water) result 
purely from atmospheric path radiance. A derivation of the 

DOS technique known as the Cos  or “COST” method is 
used in this analysis due to its simplicity and ease of use. This 
method assumes that even dark objects will possess some 
reflectance, so a value of 1% is assigned to the dark object to 
more accurately reflect actual surface reflectance (Chavez, 
1996). 

The determination of surface reflectance from the raw 
Landsat data can be a time consuming and complicated 
procedure. Fortunately, the United State Geological Survey 
(USGS) has automated this task and published a complete set 
of surface reflectance data derived from raw Landsat 5 
Thematic Mapper TM and Landsat 7 Enhanced Thematic 
Mapper (ETM+) imagery. The data, designated the Climate 
Data Record (CDR), is available from the USGS 
EarthExplorer (http://earthexplorer.usgs.gov/) website. The 
CDR data set was developed under the Landsat Ecosystem 
Disturbance Adaptive Processing System (LEDAPS) program. 
The LEDAPS project made use of the existing MODIS 
Adaptive Processing System (MODAPS) developed for the 
Moderate Resolution Imaging Spectroradiometer (MODIS) 
sensor to convert raw at-sensor data to surface reflectance 
(Masek et al., 2006). 

While the availability of this data will no doubt enhance 
the standardization and utilization of the Landsat data archive, 
it is important to consider how this data set differs from the 
surface reflectance values determined in previous studies. This 
information will allow us to evaluate the usefulness of 
revisiting those previous studies to determine if their findings 
may be altered by use of this new data set.  

In this study, we compare the surface reflectance data 
generated by the USGS with the surface reflectance generated 
using a simple Dark Object Subtraction atmospheric 
correction based on the COST algorithm developed by 
Chavez, 1996. The two data sets are compared using simple 
linear regression. Correlation coefficients are determined for 
each data set for each of the six reflective bands of the Landsat 
5 TM sensor. We analyze the data in several ways included a 
simple comparison of all data sets and how those comparisons 
have trended over time. We also compare the data sets based 
on land class, elevation, and vegetative density to determine 
which parameters may show significant disagreement.  The 
study area is an ecologically sensitive Alpine watershed in 
California’s Eastern Sierra Nevada Mountains. 

II. Study Area and Data 

A. Study Area Description 
Fig. 1 below shows the Big Pine Creek watershed located 

in California’s Eastern Sierra Mountains. Big Pine Creek is a 
major tributary to the Owens River which is a significant 
source of fresh water for Los Angeles.  

 

Figure 1:  Study area location showing the boundary of the Big Pine Creek 
watershed. 

The Owens River valley straddles the Great Basin and 
Mojave deserts with vegetation consisting primarily of pine 
forests at higher elevations and xeric species at lower 
elevations. Areas bordering streams and the Owens River are 
primarily grass dominated meadows (Elmore et al., 2003).  
Elevation within the watershed increases from East to West 
with the higher regions dominated by barren rock and 
woodlands with the lower regions dominated by mixed desert 
shrubs. 

The Big Pine Creek watershed ecosystem owes its 
existence to snow melt and melt-water from the Palisade 
Glacier. In addition to being the southern-most glacier in the 
United States, it is also the largest glacier in the Sierras with a 
surface area of 1.3 km

2
.  It was formed about 3,200 years ago, 

reaching a maximum extent as recently as 170 years ago 
(Bowerman and Clark, 2011).  It has been generally in retreat 
ever since. The Big Pine Creek watershed drainage area covers 
approximately 82 km

2
 and its average flow is 1.8 m

3
/s. 

Measurements taken in the 1980’s indicate that the creek is a 
gaining stream at the lower elevations in contrast to most other 
Owens River tributaries which are losing streams (Kondolf, 
1989). Since all of the living species within this watershed 
depend on the glacier and snow melt for their survival, the 
impact of temperature and precipitation variations on the 
biodiversity of the Big Pine Creek watershed can serve as a 
predictor of how other ecologically sensitive and critically 
essential watersheds will respond to future climate regimes. 

 There are 34 land cover classifications in the Big Pine 
Creek watershed with the ten most abundant covering 93% of 
the total surface area. These top ten land cover classifications 
are listed in table 1 along with their relative abundance. The 
USGS provides land cover information to the public through 
an online mapping service from the University of Idaho 
(http://www.gap.uidaho.edu/landcoverviewer.html). In order 
to ensure a representative sample of numerous vegetative 
species present in the watershed, three sample sites at different 
elevations, from each of the ten most abundant land cover 
classifications are selected for a total of 30 sample sites.  
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TABLE 1: Land Cover Classifications in the Big Pine Creek Watershed 

USGS Land Class  

Level 3 

Land Type Class 

ID 

PIXEL 

COUNT 

% of 

Pixels 

Mediterranean California 

Alpine Bedrock and Scree 

Barren  

(B2) 

3504 46547 39.16 

Great Basin Pinyon-
Juniper Woodland 

Woodland 
(W2) 

4514 25196 21.19 

Inter-Mountain Basins 

Montane Sagebrush  

Shrub  

(S2) 

5308 10597 8.91 

Inter-Mountain Basins Big 
Sagebrush Shrubland 

Shrub  
(S3) 

5706 9925 8.35 

Sierra Nevada Subalpine 

Pine Forest and Woodland 

Woodland 

(W3) 

4533 6819 5.73 

Sierra Nevada Cliff and 
Canyon 

Barren  
(B1) 

3215 2857 2.40 

Inter-Mountain Basins 

Mixed Salt Desert Scrub 

Shrub  

(S1) 

5205 2827 2.37 

Developed, Open Space Developed 
(D1) 

1201 1966 1.65 

Mediterranean California 

Red Fir Forest 

Woodland 

(W1) 

4318 1872 1.57 

Northern California Mesic 
Subalpine Woodland 

Woodland 
(W4) 

4608 1585 1.33 

 

These ten land cover classes fall into four types, barren, 
woodland, shrub, and developed. Differences in how the 
various land types have responded to climate change will 
provide insight into which ecological processes are being most 
affected by recent variation in environmental parameters.  

In addition to the 30 sites selected by land class, three sites 
were selected for every 100 meter elevation gradient from 
1200 meters MSL to 3600 meters MSL. At each gradient, a 
densely vegetated site, a moderately vegetated site, and a 
sparsely vegetated site were selected. These 75 sample sites 
based on elevation gradient and vegetative density combined 
with the 30 sites chosen by land class provide a total of 105 
sample sites that will be analyzed for comparison between the 
USGS CDR surface reflectance and the simplified DOS 
determined surface reflectance. 

B. Data  
The Landsat program has been providing earth observation 

remote sensing data to the scientific community for four 
decades. The first Landsat satellite was placed in orbit in 1972 
with Landsat 7 remaining operational today. Landsat 5 was 
only recently taken off-line. The next generation satellite, the 
Landsat Data Continuity Mission (Landsat 8), was launched 
on February 11th, 2013 is now operational. Unfortunately, the 
Landsat 7 ETM+ imager suffered a scan line correction 
malfunction in 2003 that causes significant striping across the 
study area, making data acquired since that event difficult to 
use. In this analysis, we use only Landsat 5 TM data collected 
over a 28 year period from 1984 through 2011. Using a single 
sensor ensures maximum consistency of the data and 
eliminates errors associated with correlating data from 
multiple sensors.  

Table 2 details the six reflective bands of the TM sensor, 
covering the blue, green, red, near infrared (NIR), short-wave 
infrared (SWIR), and mid-wave infrared (MWIR) regions of 
the spectrum as well as their ecological applications.  

TABLE 2: Landsat 5 TM Band Description and Ecological Application 

Band 
Spectral 
Range 

(m) 

Resolution 
(m) 

Region 
Common 

Applications 

1 0.45-0.52 30 Blue Soil/Vegetation 
Delineation 2 0.52-0.60 30 Green Vegetation Vigor 

3 0.63-0.69 30 Red Chlorophyll 
Absorption 4 0.76-0.90 30 NIR Biomass Surveys 

5 1.55-1.75 30 SWIR Vegetation/Soil 
Moisture 6 10.4-12.5 120 TIR Soil Moisture 

Estimation 7 2.08-2.35 30 MWIR Hydrothermal 
Mapping 

 

Bands 5 and 7 are sometimes referred to as SWIR1 and 
SWIR2. However, in this study, we refer to band 5 as the 
SWIR and band 7 as the MWIR. Band 6 covers the thermal 
infrared (TIR) and the data from this region is not used in this 
study. These descriptions are retrieved from the Northern 
Arizona University Infrared Spectrometry Laboratory website  
(http://www.cefns.nau.edu/seses/llecb/Spectrometer/RemoteSe
nsing.html). 

DOS Data 

The Landsat 5 TM imagery used in this analysis was 
acquired for 28 dates in the month of July from 1984 (year of 
launch) through 2011 (year turned off). Most of the imagery 
used in this analysis is from Path 42, Row 34 with four of the 
images from Path 41, Row 34. Both image ID ground swaths 
cover the entire study area. The Landsat imagery used in this 
analysis are listed in table 3 below. Since the period of 
maximum leaf area index generally occurs in the mid-June to 
mid-August time frame (Gond et al., 1999), only imagery in 
the July time frame was considered for this analysis in order to 
minimize the impacts of the phenological cycle on the 
reflectance data. 

The imagery used to develop the DOS set consisted of 
GeoTIFF formatted georeferenced and radiometric corrected 
files that were processed using ArcMap v 10.1 to produce the 
raw digital numbers recorded by the sensor over each sample 
point. Each of the bands from the GeoTIFF file was added as a 
layer to the ArcMap file which allows for identification of 
each Digital Number for each band for all 105 sample sites 
recorded by the sensor on that date. 

USGS CDR 

The CDR data set consisted of the same imagery with the 
raw digital numbers replaced by calculated surface reflectance 
values for each of the six reflective bands of the Landsat 5 TM 
sensor. USGS surface reflectance data is generated from a 
software package known as the Landsat Ecosystem 
Disturbance Adaptive Processing System (LEDAPS). The 
surface reflectance data is generated by applying an 
atmospheric correction to the raw Landsat 5 TM imagery 
(USGS, 2013).  

This atmospheric correction uses the Second Simulation of 
a Satellite Signal in the Solar Spectrum (6S) radiative transfer 
model to account for various atmospheric column constituents 
including water vapor, ozone, and aerosol optical thickness 
(Masek et al., 2006). 
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TABLE 3: Summary of Landsat imagery used in this analysis 

Image 

Date 
Time  

Scene ID 

(Path/Row) 
 Image 

Date 
Time 

Scene ID 

(Path/Ro

w) 
7/18/2011 10:22 42/34  7/27/1997 10:04 42/34 

7/31/2010 10:24 42/34  7/8/1996 9:47 42/34 

7/5/2009 10:16 41/34  7/22/1995 9:38 42/34 

7/25/2008 10:20 42/34  7/3/1994 9:52 42/34 

7/7/2007 10:27 42/34  7/16/1993 9:56 42/34 

7/13/2006 10:20 41/34  7/29/1992 9:56 42/34 

7/1/2005 10:21 42/34  7/27/1991 9:57 42/34 

7/30/2004 10:16 42/34  7/8/1990 9:53 42/34 

7/12/2003 10:10 42/34  7/5/1989 9:34 42/34 

7/25/2002 10:09 42/34  7/2/1988 10:04 42/34 

7/22/2001 10:14 42/34  7/25/1987 9:52 41/34 

7/19/2000 10:10 42/34  7/13/1986 9:56 42/34 

7/17/1999 10:11 42/34  7/3/1985 9:57 41/34 

7/30/1998 10:12 42/34  7/7/1984 10:02 42/34 

 

The LEDAPS process uses average daily lamp brightness 
history to obtain calibration coefficients based on acquisition 
date. These calibration coefficients are used to determine the 
at-sensor radiance values (Masek et al., 2006). The LEDAPS 
process converts at-sensor radiance to top-of-atmosphere 
(TOA) by an algorithm that incorporates solar irradiance 
derived from the MODTRAN model, bandpass, earth sun 
distance and solar zenith angle (Masek et al., 2006). 

The LEDAPS atmospheric correction assumes particle 
scattering and gaseous absorption can be decoupled (Masek et 
al., 2006). Surface reflectance is correlated with TOA 
reflectance using (1), 
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where s is the surface reflectance, Tg is the gaseous 
transmission, TR+A is the Rayleigh and aerosol transmission, 

R+A is the Rayleigh and aerosol atmospheric intrinsic 
reflectance, and SR+A is the Rayleigh and aerosol spherical 
albedo (Masek et al., 2006). The 6S radiative transfer model is 
used to derive surface reflectance from (1) with the input of 
aerosol optical thickness (AOT), atmospheric pressure and 
water vapor (Masek et al., 2006). 

III. Methodology  
This section describes the methods used to derive the DOS 

surface reflectance data set and the comparison tests 
performed. 

A. Simplified DOS Calculated Surface 
Reflectance Data  

 

Conversion of Digital Number (DN) to Top-of-Atmosphere 
Reflectance 

The first step in analyzing raw Landsat data is converting 
the digital numbers to at sensor radiance values by removing 

the gain and offset caused by the sensors themselves (Chavez, 
1996). Conversion of Calibrated Digital Number (Qcal) to at 
sensor radiance is accomplished using (2), 
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where L = spectral radiance at the sensor's aperture in 

W/m
2
•sr•m (Chander and Markham, 2003). Conversion of 

Radiance (L) to top-of-atmosphere (TOA) reflectance is 
accomplished using (3), 
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whereP = unitless planetary reflectance, L = spectral 
radiance at the sensor's aperture, d = earth sun distance in 

astronomical units, ESUN = mean solar exoatmospheric 

irradiances, s = solar zenith angle in degrees (Chander and 
Markham, 2003). 

Atmospheric Correction 

An atmospheric correction is applied to obtain surface 
reflectance using a simple image based method called Dark 
Object Subtraction (DOS) which is based on the assumption 
that radiance seen at the satellite for “dark” pixels (i.e. deep 
water or shadow) result purely from atmospheric path 
radiance. This allows us to process imagery where 
atmospheric column data are not available (generally pre-

2000). For this analysis DOS is performed using the Cos  or 
“COST” technique developed by Chavez (1996). The first step 
in the DOS method is removal of a reflectance value 
representing the contribution of the atmospheric scattering 
effect from the DN recorded at the sensor. Two ways of 
selecting this value are the histogram approach in which the 
DN selected is the first below 1000 pixels for a typical 
Landsat image, or a simpler approach in which a known dark 
object is selected using the assumption that any DN from that 
pixel is the result of the atmospheric contribution. 

Use of the histogram method typically requires analysis of 
the entire image (Chavez, 1988). Therefore, for this effort, the 
selection of the minimum pixel value representing the 
atmospheric haze was accomplished by selecting the minimum 
DN for each band over Black Lake. This mountain snowmelt 
fed water body is surrounded by trees and mountain shadow 
representing an ideal zero reflectance surface for the DOS 
method. The first step in the COST technique is to calculate 

the minimum radiance (L, min) using (4), 


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Since no targets are completely black, even the dark object 
will contain some reflectance value. Therefore, the COST 
method assigns a 1% reflectance value to the selected dark 

object (Chavez, 1996). The theoretical radiance (L, 1%) of a 
dark object (assuming a 1% reflectance) is calculated using 
(5), 
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A haze correction factor (L, haze) is then calculated using (6), 

%1,,  LLL Minhaze   (6) 

(Chavez, 1996). The corrected surface reflectance value (P) is 
then calculated using (7), 
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where TAUv represents the atmospheric transmittance from the 
ground to the sensor and TAUz is the atmospheric 
transmittance from the sun to the ground. Since Landsat 
images are taken at a nadir angle, TAUv is equal to Cos 0

o
 or 

1.0. For the COST method, TAUz is equal to the cosine of the 

solar zenith angle or Cos 
o
 (Chavez, 1996). Therefore, the 

surface reflectance is calculated from (8) as: 
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B. Comparison Methods 
Linear regression is used to determine the level of 

agreement between the two data sets. Surface reflectance 
values from each data set are plotted against each other and 
the regression statistics are calculated by the Excel statistical 
analysis tool. In this study, we consider the adjusted 
Coefficient of Determination (R

2
) and the Standard Error (SE). 

The adjusted R
2
 value is determined from the Pearson product 

correlation coefficient as shown in (9), 
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where x and y are the sample means. The closer R
2
 is to 1.0, 

the closer the data is to the more linear the relationship 
between the two variables. Adjusted R

2
 value is then 

determined as shown in (10), 
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where n is the number of observations and k is the number of 
predictors. The adjusted R

2
 value is used in this study due to 

the large number of predictors which may artificially raise the 
true goodness of fit between the data sets if the unadjusted R

2
 

value is used. 

The SE is the square root of the variance of the regression 
coefficient. It is a measure of how much variation exists in the 
data points about the regression line. It is another indicator of 
the general agreement between the variables with a smaller SE 

indicating closer agreement. The SE is calculated as shown in 
(11), 
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where n is the number of observations. 

The results of the linear regression are examined for trends 
in the data over time. Trends in the data based on elevation 
gradient and vegetative density are also examined. Presence of 
trends in the correlation between the data sets may indicate a 
bias in the methodology used to derive the surface reflectance 
values. Trends are calculated using the non-parametric Mann-
Kendall (MK) trend test. This analysis essentially determines 
if a set of values (y) are increasing or decreasing over time. 
Mann-Kendall analysis looks at the sums of the signs of the 
differences between successive data points and calculates a 
score or “S” statistic with the following properties: for S < 0 
(values are decreasing over time); for S > 0 (values are 
increasing over time). The magnitude of the S-statistic is a 
measure of the strength of the trend. For a sample size of 28, S 
values of + or – 100 indicate a statistically significant trend 
with a p value of < 0.05. This means the null hypothesis of no-
trend in the data can be discarded with the risk of committing 
a Type II (rejection of a true null or H0) error at less than 5%. 
The MK S-statistic is calculated using (12), 
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where n is the number of observations and yi (i = 1…n) is the 
value at time Ti and yj (j = 1…n) is the value at time Tj (De 
Beurs and Henebry, 2005). These calculations are carried out 
in Excel using the XLSTAT add-in statistical application. This 
program generates the S statistic as well as the probability (p) 
value which is used to quantify the statistical significance of 
the trend. The p value is defined as the probability of obtaining 
a value of S equal or greater than the calculated value for n 
when no trend is present. The confidence factor (risk of 
rejecting a true null) is defined as (1-p)*100%. 

IV. Results and Discussion  
This section presents the results obtained from our 

comparison of the surface reflectance values published in the 
USGS CDR data set and those surface reflectance values 
calculated using the simplified DOS method using the COST 
approach. 

A. Comparison of all data sets 
This study examined the surface reflectance data for 105 

sample sites for 28 dates. This provides a total of 2,940 
individual data pairs in each of the six reflective bands of the 
Landsat 5 TM sensor. Fig. 2 shows the DOS and USGS 
derived data sets plotted against each other for each of the six 
reflective bands of the TM sensor. Table 4 summarizes the 
results of comparison between all the data pairs for each band.  
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Figure 2:  Comparison of surface reflectance values all 105 sample sites for Landsat 5 TM Bands 1, 2, 3, 4, 5, & 7. 

 

TABLE 4: Adjusted R2 and SE values for all data sets from 1984 through 2011 

Adjusted R2 Values SE Values 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

0.9082 0.9245 0.9341 0.8602 0.9667 0.9628 0.0117 0.0132 0.0147 0.0169 0.0132 0.0149 

 

TABLE 5: Mean values and difference between the means for the surface reflectance value of each band 

Band Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Method DOS USGS DOS USGS DOS USGS DOS USGS DOS USGS DOS USGS 

Mean 0.078 0.100 0.111 0.133 0.136 0.148 0.257 0.259 0.248 0.256 0.198 0.213 

 (%) 10.75 16.57 8.40 0.73 3.42 7.26 

 

Table 5 summarizes the means of the surface reflectance 
values by each method for each band and shows the difference 
in those mean reflectance values. We next provide a brief 
summary of the results of our comparison for each band. 

For band 1, an adjusted R
2
 value of 0.9082 combined with 

a SE of only 1.17% suggests very strong agreement between 
the two methods. The mean value of the USGS data set is 
approximately 10% higher than the DOS derived reflectance 
mean value for band 1. This suggests the DOS technique is 
over estimating the atmospheric contribution to the at-sensor 

radiance measurement for the band 1 region (0.45 – 0.52 m). 

Similar results are seen in bands 2, 3, 5, and 7 with very 
strong agreement in surface reflectance values derived by each 
method. Band 4 had the lowest agreement between the two 
methods. However, with an adjusted R

2
 value of 0.8602 

combined with a SE of only 1.69% strong agreement exists 
between the two methods in this region also.  

B. Comparison of data sets over time 
We next looked at the influence time has had on the 

different methods of deriving surface reflectance. Table 6 
shows the trends in the adjusted R

2
 and SE values for 105 

sample sites in each band over the 28 year period from 1984 
through 2011. Trends in the adjusted R

2
 values are statistically 

significant in each band except band 5. Band 5 was strongly 
correlated throughout the 28 years study period, and the trend 
is also positive for this region of the spectrum. 

This finding demonstrates that the agreement between the 
two methods has increased significantly over the time period 
of the study. This suggests that there is a difference in how the 
DOS and USGS methods accounted for variables such as 
sensor gain and offset. Several corrections to these values have 
taken place over the 28 year time span of this study. However, 
even though the agreement between the two methods has 
increased, the agreement in the early years of the study also 
showed R

2
 values or 0.9 or better. The variation in how the 

DOS and USGS methods calculate surface reflectance values 
are not sufficient to produce tangibly different results. 
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TABLE 6: Trends in adjusted R2 and values for all data sets from 1984 
through 2011 

Trend Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

S 196 205 183 144 65 101 

p <0.0001 <0.0001 0.0003 0.004 0.206 0.048 

C. Comparison of data sets by Land 
Class 
Table 7 shows the results of the comparison between the 

USGS data set and the DOS derived surface reflectance for 
each of the top ten land cover classes present in the study area. 
There are 30 sample sites (3 for each land cover class), for 
each of the 28 years of the study providing a total of 840 data 
pairs for each band in this analysis.  

The results of this analysis shows that the correlation 
between the USGS data sets and the DOS methodology varies 
significantly based on land cover classification. While most of 
the data sets show good agreement, Land class 3215 (Sierra 
Nevada Cliff and Canyon) in particular shows poor correlation 
between the two methods for determining surface reflectance. 
This is especially true in Band 3 (Red) where there is 
significant scatter among the data points as shown in fig. 3. 

Sierra Nevada Cliff and Canyon land cover consist of 
rocky barren areas located in the foothills and sub alpine areas 
of the Sierra Nevada’s. Typically less than 10% of the surface 
contains any vegetative species. The geography consists of 
steep cliff faces, rock outcrops, canyon walls and some talus 
(SWReGAP 2003).  This suggests that extreme 
topographic variation within individual pixels has an impact 
on the surface reflectance determinations between the two 
approaches. 

TABLE 7: Trends in adjusted R2 values for all data sets from 1984 through 
2011 

Land 
Class 

 

Adjusted R2 Values 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

3504 0.9347 0.9327 0.9357 0.8573 0.9449 0.9432 

4514 0.8764 0.8909 0.9220 0.7876 0.8787 0.8811 

5308 0.6546 0.7314 0.7840 0.5600 0.8308 0.8104 

5706 0.8682 0.8200 0.6909 0.2662 0.6598 0.5966 

4533 0.5951 0.6424 0.6320 0.5380 0.4558 0.4177 

3215 0.6401 0.4533 0.1735 0.5629 0.8646 0.5224 

5205 0.9518 0.9516 0.9309 0.8639 0.5513 0.7174 

1201 0.8072 0.4984 0.4870 0.2896 0.8075 0.7814 

4318 0.9482 0.9523 0.9511 0.8412 0.9653 0.9640 

4608 0.7182 0.8090 0.8577 0.7614 0.7755 0.8819 

D. Comparison of data sets by Elevation 
Gradient 

Next, we examine the results of the comparison between the 
USGS data set and the DOS derived surface reflectance at 
each elevation from 1200 meters MSL to 3600 meters MSL. 
There are 84 pairs of data at each elevation, (3 sites x 28 
years). 

 

 

 

Figure 3:  Comparison of surface reflectance values Sierra Nevada Cliff and 
Canyon Land Class for Landsat 5 TM Band 3 (RED 0.63 – 0.69 

m). 

Table 8 shows that the correlation between the USGS data 
sets and the DOS methodology increase with elevation. Trends 
in the adjusted R

2
 values in the SWIR and MWIR bands are 

not statistically significant and we can only infer that the 
USGS and DOS data sets show closer agreement at higher 
elevations from the positive S values. Although not 
statistically significant, the trends in the visible and NIR 
regions is strong suggesting closer agreement between the two 
surface reflectance methodologies at higher elevations. 

E. Comparison of data sets by 
Vegetative Density 
Table 9 shows the results of the comparison between the 

USGS data set and the DOS derived surface reflectance for 
densely, medium, and sparsely vegetated sites. There are 700 
pairs of data for each vegetative density, (25 elevations x 28 
years).  This analysis indicates that the agreement between the 
USGS data and the DOS methodology declines with 
increasing vegetation density with the exception of band 7. 
Since the sparse areas have a higher absolute reflectance, the 
data shown here indicate correlation between the USGS data 
and the DOS data increases with absolute surface reflectance. 

 

TABLE 8: Trends in adjusted R2 and values for all data sets by elevation 

Trend Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

S 90 86 47 90 8 2 

p 0.037 0.047 0.283 0.037 0.870 0.982 

 

TABLE 9: Adjusted R2 values for densely, medium and sparsely vegetated 
sites 

Density Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Dense 0.7926 0.8507 0.8726 0.8356 0.9541 0.9394 

Medium 0.8080 0.8664 0.8683 0.8745 0.9548 0.9335 

Sparse 0.8853 0.8877 0.8931 0.9093 0.9770 0.9354 
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This observation is consistent with the previous finding for 
trends in the agreement between the two methods based on 
elevation gradient since vegetation density tends to decline at 
higher elevation; we observe the R

2
 value increase with 

elevation. 

Confidence Levels 

Multitemporal satellite imagery is impacted by several 

factors including changes in sensor response, sensor stability, 

atmospheric effects, and illumination effects (Vicente-Serrano 

et al., 2008).  Radiometric uncertainty for the TM data is 

approximately 5% (Chander et al., 2009). 

The USGS surface reflectance data set has been assessed 

against MODIS surface reflectance data and found to be 

highly correlated with discrepancies between 2.2 to 3.5 

percent (Feng et al., 2013). 

V. Summary and Conclusions 
This study compared the surface reflectance values 

published in the USGS Climate Data Record archive with 
surface reflectance calculated using a simple Dark Object 
Subtraction method. The ecologically sensitive Big Pine Creek 
watershed served as the study site and 105 sample locations 
within that watershed were examined for 28 dates in each of 
the six reflective bands of the Landsat 5 TM imager. Simple 
linear regression was used to compare the surface reflectance 
values determined by each method. In addition to looking at a 
complete comparison of all the data pairs, sample sites were 
analyzed based on land cover class, elevation, and vegetative 
density. Trends in the data over time and by elevation were 
also determined. 

The overall comparison of the two methods showed very 
close agreement in the surface reflectance values, with band 7 
showing the closest agreement (adjusted R

2
 = 0.9628) and 

band 4 shown the least (adjusted R
2
 = 0.8602). Mean surface 

reflectance values from the USGS CDR data set are generally 
higher than the values determined by the DOS method with 
band 2 showing the highest difference between the means 
(16.57%) while band 4 showed the least difference between 
the means (0.73%). The statistically significant positive trends 
in the level of agreement between the two methodologies over 
time suggests differences in the values used for the gains and 
offset values for the Landsat 5 TM sensor. These values were 
revised periodically to correct for changes in the radiometric 
response of the sensor over time or for improved calibration 
data sets (Chander and Markham, 2003). 

The greatest discrepancy between the two methodologies is 
found in comparisons of surface reflectance over the land class 
3215 (Sierra Nevada Cliff and Canyon). This may be the result 
of the large topographical variations within individual pixels 
that can occur for this land cover class. While this one result 
makes it clear that discrepancies do exist in the two 
methodologies, the primary conclusion we draw from the 
results of this study is that the USGS derived CDR data base 
shows good agreement with the data generated using previous 
methods. This suggests that the need to revisit past studies 
using the newly available surface reflectance data set would 
not result in new findings or altered conclusions. 
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