
191

Providing Fault Tolerance in Grid Computing Systems

Torki Altameem

Abstract—In grid computing, resources are used outside the

boundary of organizations and it becomes increasingly difficult

to guarantee that resources being used are not malicious. Also,

resources may enter and leave the grid at any time. So, fault

tolerance is a crucial issue in grid computing. Fault tolerance

can enhance grid throughput, utilization, response time and

more economic profits. All mechanisms proposed to deal with

fault-tolerant issues in grids are classified into: job replication

and job checkpointing techniques. These techniques are used

according to the requirements of the computational grid and

the type of environment, resources and virtual organizations it

is supposed to work with. Each has its own advantages and

disadvantages which forms the subject matter of this paper.

Index Terms—Fault tolerance, Grid computing,

Checkpointing, Job replication.

I. INTRODUCTION

Grid computing technology is developed for solving

large scale computational and data intensive problems in

science, engineering, and commerce [1]. It is distinct from

conventional distributed computing by autonomic

heterogeneous resources and large scale resource sharing

[2]. It uses resources of many separate computers connected

by a network (usually internet). The tremendously large

number and the heterogeneous potential of grid resources

cause scheduling of user jobs to these resources is the key

technology in grid computing [1], [3], [4].

Grid computing systems have been used for execution of

applications that need more time. During execution, the

computation cannot complete if any resource failure is

encountered. The possibility of failures occurring is

exacerbated by the fact that many grid resources will be

used in performing long tasks that may need several days of

computation. Also, since grid environments are extremely

heterogeneous and dynamic, with components joining and

leaving the system all the time, more faults are likely to

occur in grid environments. Therefore, fault tolerance has

become a crucial issue in grid computing systems.

The fault tolerance techniques compromise between

efficiency and reliability of the resource in order to

complete the execution even in the presence of failures. The

main objective usually is to preserve efficiency hoping that

failures will be less. However, the computational resources

have increased in grid but its dynamic behavior makes the

environment unpredictable and failure prone.

All techniques proposed to deal with fault-tolerant issues

in grids are classified into two categories. The first one is

called space redundancy or job replication. In this category,

the same job is replicated to be executed on multiple

undependable resources to guard the job against a single

point of failure. The second category is called time

redundancy or checkpointing and rollback. In this category,

the state of a running job is saved to a stable storage. This

state can be used later in case of any fault to resume

execution of the job instead of restating it. An adaptive

technique uses both job replication and checkpointing to

achieve the fault-tolerant [5]. To overcome the drawbacks

present with job replication and checkpointing, fault

tolerance is factored into grid scheduling.

This paper presents the most commonly used fault

tolerance techniques in grid computing systems. Also, it

considers the most parameters used for evaluating the

performance of grid computing systems.

This paper is organized as follows: section 2 briefly

explains fault tolerance in grid computing. In Section 3, the

standard metrics used to measure the performance of fault

tolerance techniques are presented. Section 4 elaborates the

techniques of the fault tolerance in grids. Section 5 discusses

the process of selecting the fault tolerance technique.

Section 6 concludes the paper.

II. FAULT TOLERANCE IN GRID COMPUTING

Fault tolerance is preserving the delivery of expected

services despite the presence of fault-caused errors within

the system itself. Errors are detected and corrected and

permanent faults are located and removed while the system

continues to deliver acceptable services [6]. In

computational grids, fault tolerance is important as the

dependability of grid resources may not be guaranteed. It is

needed to enable the grid to continue its work when one or

more resources fail. In this sense, a fault-tolerant service

must be included to detect errors and recover from them and

thus avoiding the failure of the grid.

The heterogeneous nature of grid resources means that

applications will be performing in environments where

faults are more likely to occur between disparate resources.

if there is no fault tolerance provided, the grid cannot

survive to continue when one or more resources fail and the

whole application crashes. Thus a fault tolerant technique is

needed that would enable grid to continue executing even in

the presence of faults.

The architecture of basic fault tolerance employed in

grid computing systems is shown in Fig. 1. The system has

five main components: Grid Interface, Allocator,

Information Server, Fault Handler, and the Grid. Grid

Interface provides an interface to users to submit their jobs

for execution. Allocator selects the optimal resources to

execute the job. The allocation decisions of the Allocator are

based on the Quality of Service (QoS) requirements of

users. The Information Server (IS) contains information

about all resources in the grid. The information can include

computation speed, memory available, load, and so on. The

IS supplies the scheduler with the required information. The

Fault Handler is responsible for detecting failure of

Proc. of the Intl. Conf. on Advances In Computing, Communication and Information Technology – CCIT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-010-1 doi: 10.15224/ : 978-1-63248-010-1-106

192

resources and estimating the required information for fault

tolerance process.

III. PERFORMANCE METRICS

The performance of fault tolerance techniques is

measured by standards metrics turnaround time, throughput,

fail tendency and grid load. The parameters are defined as:

Turnaround time: It is an important parameter for

determining the performance of different fault tolerance

techniques. It is the only parameter users pay attention for. It

can be defined as the interval of time elapsed from

submission of a job to the time of its completion.

Throughput: Historically, throughput has been a

measure of the comparative effectiveness of high

performance computers that run many programs

concurrently. An early throughput measure was the number

of batch jobs completed in a certain period of time. More

recent measures assume a more complicated mixture of

work or focus on some particular aspect of computer

operation.

Throughput is used to measure the ability of the grid to

accommodate jobs. It is defined as:

,)(
nT

n
nThroughput

where n is the total number of jobs submitted and Tn is

the total amount of time necessary to complete n jobs.

Fail tendency: It is the percentage of the tendency of

grid resources to fail and is defined as:

%,100
1

m

p

cyFailTenden

m

j

fj

where m is the total number of grid resources and pfj is

the failure rate of resource j. Through this metric, we can

expect the faulty behavior of the system.

Grid load: It represents the amount of extra

computations encountered by the grid to alleviate the effect

of resources failures.

IV. FAULT TOLERANCE TECHNIQUES

Providing fault tolerance in a grid environment, while

optimizing resource utilization and response time, is a

challenging task. A large number of research efforts have

already been devoted to fault tolerance in the area of

distributed computing. However, a little work has been done

for fault tolerance in grid environments. Aspects that have

been explored include the design and implementation of

fault detection services, as well as the development of

failure prediction, and recovery strategies. The recovery

strategies are classified into job replication (space-sharing)

and checkpointing (Time-sharing).

A. Job replication

Job replication is a key mechanism for developing fault-

tolerant and highly available grids. It is commonly used by

fault tolerance mechanisms in order to enhance the

availability of the grid. Replication is based on the

assumption that the probability of a single resource failure is

much higher than of a simultaneous failure of multiple

resources. It avoids job recomputation by starting several

copies of the same job on different resources. With

redundant copies of a job, the grid can continue to provide a

Fig. 1. The basic architecture of fault tolerance in grid computing.

Grid

Interface

Allocator

Information

Server

R1

application

Results ap
p

lic
at

io
n

R
e

su
lt

s

Q
u

e
ry

R
e

so
u

rc
e

s

lis
t

Notify

Update

Grid

Fault

Handler

R2 Rn …

Proc. of the Intl. Conf. on Advances In Computing, Communication and Information Technology – CCIT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-010-1 doi: 10.15224/ : 978-1-63248-010-1-106

193

service in spite of failure of some grid resources carrying

out job copies without affecting the performance of the grid.

J. Abawajy [7] presented a distributed fault-tolerant

scheduling (DFTS) algorithm that couples job scheduling

with job replication. He assumed that grid is divided into

sites and each site has a scheduling manager for resources in

this site. Each scheduling manager acts as a backup for

another scheduling manager. His algorithm is static because

it depends on using a fixed number of replicas for each job.

Each job replica is scheduled to a different site to be

executed. The number of replicas is specified by the user at

the time of job submission.

K. Srinivasa, G. Siddesh and S. Cherian [8] proposed an

adaptive replication middleware which depends on data

replication at different sites of the grid. The middleware

dispatches replicas to different nodes and enables data

synchronization between multiple heterogeneous nodes in

the grid. Data sources are synchronized by using TCP/IP

transfer protocol.

M. Chetepen et al [9] provided some scheduling

heuristics based on job replication and rescheduling of failed

jobs. Their heuristics do not depend on particular grid

architecture and they are suitable for scheduling any

application with independent jobs. Scheduling decisions are

based on dynamic information on the grid status and not on

the information about the scheduled jobs.

In [10], C. Jiang and et al proposed a replication based

fault tolerant algorithm which schedules jobs by matching

the user security demand and the resource trust level. The

number of job replications changes adaptively according to

the security level of the grid environment.

M. Amoon [5] considers adaptive job replication

technique in order to create a proactive fault-tolerant

scheduling system. In his system, two algorithms are

proposed. One algorithm is for determining the number of

replicas for each job, namely and the other algorithm is used

for selecting the resources that execute these replicas. Both

of algorithms depend on using the fault rate of the resources.

The number of replicas is dynamic and is determined

according to the fault rate of resources scheduled for jobs.

The main disadvantage of job replication technique is

the additional resources used in executing the same job. This

can cause grid over provisioning and can lead to great

delays for other jobs waiting these resources to become free.

Also, most of the existing replication based techniques are

static. This means that the number of replicas of the original

job is decided before execution and it is fixed number. Static

job replication leads to excessive utilization of resources and

also to excess load on the grid.

On the other hand, adaptive job replication can alleviate

this extra load resulting from using fixed number of replica.

Adaptive job replication techniques determine the number

of replica according to the failure history of the primary

resource allocated to execute the job. Thus, the number of

replica will be different for each job according to the failure

behavior of each resource in the past. Bad failure history

means big number of replica and good failure history means

small number of replica.

Fig. 2 shows the comparison between using a static job

replication technique and using and adaptive one. It is

shown that adaptive replication techniques provide less grid

load than the static ones. So, using adaptive replication

techniques is better than using static replication techniques.

Fig. 2. Comparison between static and dynamic job replication.

B. Job checkpointing

Checkpointing is the ability to save the state of a

running job to a stable storage. In case of any fault, this

saved state can be used to resume execution of the

application from the point in computation where the check-

point was last registered instead of restarting the application

from its very beginning. This can reduce the execution time

to a large extent. Thus, the purpose of checkpointing is to

increase fault-tolerance and to speedup application

execution on unreliable systems.

Many real time applications in distributed system [11],

[12], [13 have used checkpointing for performance

optimization. F. G. Khan, K. Qureshi and B. Nazir [14]

presented a performance evaluation of most commonly used

fault-tolerant techniques (FTTs) in grid computing. These

FTTs include retrying, checkpointing, alternate resource and

alternate task. The metrics used in their evaluation are

throughput, turnaround time, waiting time and network

delay.

B. Nazir, K. Qureshi and F. G. Khan [15] presented an

adaptive fault tolerant job scheduling strategy for grids.

Their strategy is checkpointing-based. It maintains the fault

index of grid resources. The scheduler makes scheduling

decisions according to the value of the fault index of

resources and response time of resources.

In [16], M. Nandagopal and V. R. Uthariaraj combined

the mechanism developed in [15] with Minimum Total Time

to Release (MTTR) job scheduling algorithm. Also, when

making scheduling decisions, their scheduler depends on

using the fault index and the response time of resources.

J. Mehta and S. Chaudhary [17] assumed that short

running jobs can be resubmitted from scratch if they failed

and presented a fault tolerant scheme that should applied to

long running jobs using checkpointing.

In [18], P. Domingues, J. Silva and L. Silva presented a

study about the effects of sharing checkpoints on turnaround

time in desktop grid systems. In [19], M. Chtepen et al

provided an algorithm called MeanFailureCP. This

algorithm is designed to modify a job checkpointing interval

as a function of mean failure frequency of resources where

0

2

4

6

8

10

12

14

1000 2000 3000 4000 5000

G
ri

d
 lo

ad
 (

TI
P

S)

Jobs

Static

Adaptive

Proc. of the Intl. Conf. on Advances In Computing, Communication and Information Technology – CCIT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-010-1 doi: 10.15224/ : 978-1-63248-010-1-106

194

the job is being executed, and the total job execution time.

In [20], they developed the MeanFailureCP+ algorithm

which is a modification of the MeanFailureCP that deals

with checkpointing of grid applications with execution times

that are unknown a priori.

The main disadvantage of checkpointing mechanism is

that it performs identically regardless the stability of the

resource. This inappropriate checkpointing can delay the job

execution and can increase the grid load. Furthermore, each

job maintains multiple checkpoints and has to periodically

invoke a garbage collection algorithm to reclaim the

checkpoints that are no longer useful.

The efficiency of a checkpointing technique strongly

depends on a good choice of a checkpointing interval. The

checkpointing interval is the duration between two

checkpoints. Short checkpointing interval leads to a large

number of redundant checkpoints, which delay job

processing by consuming computational and network

resources. On the other hand, when a checkpointing interval

is too long, a substantial amount of work has to be redone in

case of a resource failure. Each interval starts when a

checkpoint is established and ends when next checkpoint is

established. There are several benefits of using

checkpointing, including: fault recovery, better response

time, and better system utilization.

Fig. 3. Comparison between static and dynamic job checkpointing.

Most of job checkpointing techniques use a static or

fixed number of checkpoints which leads to excessive

utilization of resources and also to excess load on the grid.

Adaptive job checkpointing techniques can alleviate this

extra load resulting from using fixed number of checkpoints.

These techniques determine the number of checkpoints

according to the failure rate of the primary resource

allocated to execute the job. Thus the number of checkpoints

will be different for each job. Fig. 3 shows the comparison

between using a static checkpointing technique and using

and an adaptive one. It is shown that adaptive checkpointing

techniques provide less grid load than the static ones. So,

using adaptive checkpointing techniques is better than using

static checkpointing techniques.

V. FAULT TOLERANCE TECHNIQUE SELECTION

Fault tolerance is widely adopted to increase the overall

system performance and reliability of grids. Since grid

computing systems usually include a large number of

distributed resources, selecting the most suitable fault

tolerance technique reduces the overhead of system

developers and helps to achieve optimal scheduling of

resources.

Different fault tolerance techniques have different

features. For example, the response time of a checkpointing

technique is not good compared with the job replication

technique. This is due to the extra time needed to migrate

the job to another resource when a resource fails. On the

other hand, job replication technique does not need to

migrate jobs between resources and the first returned

response is employed. The required networking and

computing resources of job replication techniques are much

higher than those of checkpointing techniques.

Checkpointing has another cost when writing checkpoint

data to stable storage whenever a checkpoint is taken. This

cost is proportional to the size of the checkpoint data.

Thus, we can use checkpointing strategy for the

resources constrained grids and job replication technique for

real time applications. However, determination of the

number of replica and the number and intervals of

checkpoints are still big challenges.

VI. CONCLUSIONS

Fault tolerance plays an important role in order to

achieve good performance of a grid system. The most

famous standards metrics used to evaluate the performance

of fault tolerance techniques are turnaround time,

throughput, fail tendency and grid load. Replication and

Check pointing are the major techniques used in any fault-

tolerant grid management system. In this paper, some works

that have been done using the two techniques are surveyed.

It is shown that adaptive fault tolerant technique provides

better performance than static one.

REFERENCES

[1] P. Huang, H. Peng, P. Lin and X. Li, “Static Strategy and Dynamic
Adjustment: An Effective Method for Grid Task Scheduling,” J.

Future Generation Computer Systems 25, 884–892 (2009).

[2] L. Lu and S. Yang, “DIRSS_G: An Intelligent Resource Scheduling
System for Grid Environment Based on Dynamic Pricing,” Int. J.

Information Technology 12 (4), 120–127 (2006).

[3] L. Chunlin, Z. J. Xiu, and L. Layuan, “Resource Scheduling with
Conflicting Objectives in Grid Environments: Model and

Evaluation,” J. Network and Computer Applications 32, 760–769

(2009).
[4] T. Altameem and M. Amoon, “An Agent-Based approach for dynamic

adjustment of scheduled Jobs in Computational Grids”, Journal of

Computer and Systems Sciences International, vol. 49, no. 5, pp.
765–772, Oct. 2010.

[5] M. Amoon, “Design of a Fault-Tolerant Scheduling System for Grid

Computing,” Proc. of International Conference on Networking and
Distributed Computing (ICNDC2011), 21-24 Sep., 2011, Beijing, P.

R. China, pp. 104-108.

[6] M. Amoon, “A job checkpointing system for computational grids,”
Central European Journal of Computer Science, vol. 3, no. 1, pp. 17-

26, March 2013.

[7] J. Abawajy, "Fault-tolerant scheduling policy for grid computing
systems," Proc. of 18th IEEE International Parallel and Distributed

Processing Symposium, April 26-30, 2004.

[8] K. Srinivasa, G. Siddesh and S. Cherian, "Fault-tolerant middleware for
grid computing," Proc. of 12th IEEE International Conference on

0

2000

4000

6000

8000

10000

100 200 300 400 500

C
h

e
ck

p
o

in
ts

Jobs

Adaptive

Static

Proc. of the Intl. Conf. on Advances In Computing, Communication and Information Technology – CCIT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-010-1 doi: 10.15224/ : 978-1-63248-010-1-106

195

High Performance Computing and Communications, Melbourne,

Australia, pp. 635-640, Sep. 1-3, 2010.

[9] M. Chtepen, B. Dhoedt, F. Cleays and P. Vanrolleghem, "Evaluation of

replication and rescheduling heuristics for gird systems with varying

resource availability," Proc. of 18th International Conference on

Parallel and Distributed Computing Systems, Anaheim, CA, USA,
pp. 622-627, Nov. 13-15, 2006.

[10] B. Khoo and B. Veeravalli, "Pro-active failure handling mechanisms

for scheduling in grid computing environments," J. Parallel and
Distributed Computing, vol. 70, no. 3, pp. 189-200, 2010

[11] Buyya R (2002) Economic-based distributed resource management

and scheduling for grid computing. Ph.D. Paper, Monash University,
Melbourne, Australia, 12 April 2002

[12] Foster I, Kesselman C, Tueke S (2001) The anatomy of the grid:

enabling scalable virtual organizations. Int J Supercomput Appl.
[13] Nazir B, Khan T (2006) Fault tolerant job scheduling in computational

grid. In: Proceedings of 2nd IEEE international conference on

emerging technologies (ICET’06), Peshawar, Pakistan, 13–14
November 2006, pp 708–713

[14] F. G. Khan, K. Qureshi and B. Nazir, "Performance Evolution of Fault

Tolerance techniques in Grid Computing System," Journal of
Computing and Electrical Engineering, vol. 36, pp. 1110-1122, 2010.

[15] B. Nazir, K. Qureshi and F. G. Khan, "Adaptive checkpointing

strategy to tolerate faults in economy based grid," Journal of
Supercomputing, vol. 50, pp. 1-18, 2009.

[16] M. Nandagopal and V. R. Uthariaraj, "Fault Tolerant Scheduling

Strategy for Computational Grid Environment," International Journal
of Engineering Science and Technology, vol. 2, no.9, pp. 4361-4372,

2010.

[17] J. Mehta and S. Chaudhary, "Checkpointing and recovery mechanism
in grid," Proc. of Sixteenth Intl. Conf. on Advanced Computing and

Communication (ADCOM 2008), Chennai, 14-17 Dec. 2008, pp.

131-140.
[18] P. Domingues, J. Silva and L. Silva, "Sharing Checkpoints to Improve

Turnaround Time in Desktop Grid Computing," Proc. of the 20th

Intl. Conf. on Advanced Information Networking and Applications
(AINA’06), Vienna, Austria, 18-20 April 2006.

[19] M. Chtepen et al, "Adaptive Task Checkpointing and Replication:

Toward Efficient Fault-Tolerant Grids," IEEE Trans. Parallel and
Distributed Systems, vol. 20, no. 2, pp. 180-190, Feb. 2009.

[20] M. Chtepen, F. Claeys, B. Dhoedt, F. Turck, P. Demeester, and P.
Vanrolleghem, "Adaptive checkpointing in dynamic grids for

uncertain job durations," Proc. of the 31st Intl. Conf. on Information

Technology Interfaces (ITI), Dubrovnik, Croatia, 22-25 June 2009.

Proc. of the Intl. Conf. on Advances In Computing, Communication and Information Technology – CCIT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-010-1 doi: 10.15224/ : 978-1-63248-010-1-106

