
 

Test Cases Reduction through Prioritization Technique 
Avinash Gupta, Nayaneesh Mishra, Dushyant Kumar Singh

1
  and Dharmender Singh Kushwaha

1
 

1 MNNIT Allahabad, India  

 
 

Abstract. Regression testing is a costly and time taking 

affair. Because of time and resource constraints it is not 

possible to run all the test cases of the regression test 

suite. Prioritization of test cases provides a way to run 

highest priority test cases in the first phase. It helps to 

improve the percentage of fault detected in given time 

and is found to work better with feedback mechanism. 

History Based approach is one of the methods to 

prioritize the test cases based on the feedback of each 

test case.  The feedback for each of the test cases is 

obtained from the history of each of the test cases in 

terms fault detection, number of executions and other 

such factors. This paper proposes the prioritization of 

test cases for the modified lines of code. The results 

establish that number of sessions required for running 

the test cases reduces by almost 33%.  
Keywords: Feedback in prioritization, 

Prioritization, History Based, percentage of Fault 

detection, Test Suite 

1   Introduction & Related Work 

Estimates indicate that software maintenance activities 

account for as much as two-third of the cost of software 

production [16]. Regression testing forms an expensive 

but necessary task in the maintenance phase. Three 

different techniques have, therefore, been proposed for 

test suite reduction as - prioritization, selection and 

minimization of test suite. 
 

A test suite minimization technique lowers the cost by 

reducing a test suite to a minimal subset that maintains 

equivalent coverage of original set with respect to 

particular test adequacy criterion [12]. Test suite 

minimization techniques [3], however, can have some 

drawbacks. Although one clan of researchers think that, 

in certain cases there is little or no loss in the ability of a 

minimized test suite to reveal faults [2] in comparison to 

its un-minimized original, the other clan thinks 

otherwise [12, 14]. The fault detection ability of test 

suites can be severely compromised by minimization. 
 

Regression test selection technique [17] attempts to 

reduce the time required to retest a modified program by 

selecting some subset of the existing test suite, as in 

case of minimization. However, there is some 

difference. As mentioned by S. Yoo, M. Harman [14], 

both problems are about choosing a subset of test cases 

from the test suite but the key difference between these 

two approaches in the literature is whether the focus is 

upon the changes in the subject under test. Test suite 

minimization is often based on metrics such as coverage 

measured from a single version of the program under 

test. Some selection techniques select test cases based 

on program specification while most techniques select 

test cases based on the information about the code of the 

program and the modified version [18, 19, 20, 21 and 

22]. However, selected test cases can be fault revealing 

only if a test case t is modification-revealing. But 

finding modification revealing test cases is an un-

decidable problem [17]. 
 

Test case prioritization is the process of scheduling test 

cases in an order to meet some performance goal [13]. 

Prioritization gives priority to test cases based on 

criteria [15, 23]. The criteria may be code coverage etc. 

However, one of the limitations in this process is that 

the fault detection efficiency of the test suite may be 

compromised. The test suite may contain test cases on 

higher priority which may not be able to detect the 

errors [5]. Hence, several techniques have been 

proposed for prioritizing the existing test cases to 

accelerate the rate of fault detection in regression 

testing. Some of these approaches are Coverage-based 

Prioritization [13], Interaction Testing, Distribution-

based Approach [7], Requirement-based Approach, and 

the Probabilistic Approach [6]. All these approaches 

apart from probabilistic approach referred above 

consider prioritization as an unordered, independent and 

one-time model. They do not take into account the 

performance of test cases in the previous regression test 

sessions, such as the number of times a test case 

revealed faults [15]. History Based Approach (HBA) 

has been applied to increase the fault detection ability of 

the test suite. Kim and Porter [6] considered the 

problem of prioritization of test cases as a probabilistic 

approach and defined the history-based test case 

prioritization. Alireza et al. [5] proposed an extension of 

history-based prioritization proposed in [6], and 

modifies the equation given by Kim and Porter [6], to 

have dynamic coefficients. The priority is calculated 

using the mathematical equation by computing the 

coefficients of the equation from the historical 

performance data. 
 

In this paper, we propose a new approach which is an 

extension of the history based approach in [6]. Unlike in 

[6], where the prioritization equation has been applied 

on each test case, we apply the approach on each 

modified line of the code. The rest of the paper is 

organized as follows. In Section 2, we present the 

proposed approach and implementation. Section 3 

describes performance analysis and comparison results. 

We conclude the paper and discuss future work in 

Section 4. 

From the discussion above, it can therefore be easily 

deciphered that those approaches which consider history 

to prioritize the test cases would certainly be better in 

terms of fault detection effectiveness than those that did 

not. HBA approach takes into account the history of test 

cases while prioritizing them in the present session to 

increase the fault detection effectiveness of the test 

suite.  

Proc. of the Intl. Conf. on Advances In Computing, Communication and Information Technology - CCIT 2014. 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-1-63248-010-1 doi: 10.15224/ 978-1-63248-010-1-21 

 

104 



2   Proposed Approach 

In our proposed approach, we have extended the 

previous approach [5] by prioritizing the modified lines. 

The history is kept for each of the modified lines which 

act as feedback for the next session. In our proposed 

approach, the test cases are selected for each modified 

line such that the test case is having the maximum 

coverage among all the test cases which contain the 

modified line. By the phrase ’containing a modified 

line’ we mean that the test case executes the modified 

line in its line of execution. 
 

Step1: Extract History from Database 

In this phase all the parameter values of the previous 

session are extracted from the database by the program 

into arrays for use in the present session.  
 

Step2: Input Modified Lines The modified lines are 

taken as input from the user through a well defined 

interface of the program. Any new test cases are also 

entered through this interface. 

Step3: Find max coverage and ax coverage test case 

If the modified line say, mi is present in a test case Ti , 

then max coverage of line mi = max (no. of lines in Ti 

/total number of lines ) * 100 for all Ti in which mi is 

found. Ti is the max coverage test case for mi, if Ti has 

max code coverage. 

Step4: Calculate Priority Value for Modified Value 

For each modified line, the priority value is calculated 

using Eq. (1)[11]. 

PRk = (α.hk + β.PRk-1)/k                        (1) 

α = (1 - ((fck + 1)/(eck + 1))
2
)

h
k                    (2) 

β = ((fck + 1)/(eck + 1))
x
                               (3) 

In Eq (1), 0 ≤ α, β < 1,  k ≥ 1. 

In Eq. (3), x=1 if the test case has revealed some fault in 

the previous session and x=2 if the test case has not 

revealed any fault in the previous session. In Eq. (1), hk 

is the test cases execution history.  eck denotes the total 

number of executions done by a test case till the session 

k. fck denotes the total number of faults detected by a 

test case till the session k. In Eq. (1), PR0 is defined for 

each test case as the percentage of code coverage of the 

test case. The presence of PR0 will be helpful in refining 

the ordering of the test cases in the first session. 
 

Step 5: Prioritize Modified Lines 

Modified lines are prioritized by their corresponding 

PRk, in descending order. If the modified lines m1, m2 

and m3 have PRk values as - PRk [m1] = 10.56  

PRk [m2] = 54.56  

PRk [m3] = 9.64. Hence ordering would be - m2, m1 , m3. 

Step 6: Prioritize Test cases in order of modified 

lines 

Max coverage test case for, say  m1 = T2,  m2 = T1,  m3 

= T3 

Hence ordering of test cases in order of the respective 

modified line m2, m1 and m3 would be - T1, T2, T3. 

Step 7: Output prioritized the test cases 

The final output for session k is T1, T2, T3. After 

prioritizing, the test cases are executed. Let us assume 

that only 40% of all the test cases prioritized are able to 

get executed. Out of all the test cases executed, there are 

certain test cases which detect fault, and after debugging 

a fault is detected. Then, the parameters are updated in 

the following manner- 
 For each executed line i, in the present session k, 

increment the value of parameter eck by 1 and set the 

value of hk to 0 for the line i. 

 For the rest of the lines which did not execute in the 

present session k, increment the value of hk by 1. 

 For each faulty line i, detected in session k, increment the 

value of parameter fck by 1 for the line i. 

The database is updated with all these modifications. 
 

Implementation 

The proposed approach has been implemented using ’C’ 

program. The database to keep the history and all the 

test cases has been kept in two text files: ’textcases.txt’ 

and ’Parameters.txt’. The file ’testcases.txt’ contains the 

test cases in the form of traces of each of the test case. 

This means that ’testcases.txt’ contains the lines which 

will be covered by each test cases once they execute. 

There is another file called ’Parameters.txt’ which keeps 

the history of all the parameter values which will be 

used to calculate the priority value PRk for each 

modified line. The C program, itself has namely 2 

sections: 

 An interface: 

This is the interface provided to insert all the test cases. 

This interface is also used to insert the line numbers of 

modified, deleted and added lines. It is also used to 

insert the line number of faulty line of the previous 

session. 

 Prioritizing section: 
This section calculates the priority of each modified line 

and outputs them in order of priority. This section also 

outputs all the test cases in order of priority. 

 

Case Study I: 

The proposed approach is demonstrated with an 

example here. We are considering a ‘C’ program that 

implements Heap Sort. The program has 60 lines of 

code. 

The program is modified at 6 different lines numbers 

12, 20, 24, 30, 38, 46. The changes in each of the 

modified lines are shown in Table 1. These 

modifications are small changes which change one 

operator with the other one, like changing the > with <, 

or changing == (equal to operator) with !=.(not equal to) 

or change a value of a constant or other such small 

changes.  
 

Table 1: Changes in the Sample program 

Line no. Original line Modified line 

12 i>=0 i<=0 

20 
(left <= n && 

a[left] > a[i]) 

(left <= n || a[left] 

> a[i]) 

24 largest=i largest=right 

30 largest!=i largest==i 

38 a[i]=a[j] a[j]=a[i] 

46 i>0 i<0 
 

The Control Flow Graph (CFG) for the program of 

Heap Sort and the modified program of Heap Sort is 

Proc. of the Intl. Conf. on Advances In Computing, Communication and Information Technology - CCIT 2014. 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-1-63248-010-1 doi: 10.15224/ 978-1-63248-010-1-21 

 

105 



same as given in Figure 2. The CFG has been developed 

using SourceCode Visualizer Tool [2] which is a plug-in 

of Eclipse. Based on path coverage, we have the 

following 9 test cases: 

T1 : 11, 12, 13, 15 

T2 : 11, 12, 15 

T3 : 37, 38, 39, 40 

T4 :  54, 55, 56, 57, 59 

T5 :  54, 55, 56, 59 

T6 :  43, 44, 46, 51 

T7 :  43, 44, 46, 47, 48, 49, 51 

T8 :  18, 19, 20, 21, 27, 28, 30, 31, 32, 34 

T9 :  18, 19, 20, 24, 27, 30, 34 
 

These test cases are kept in the ’testcases.txt’ file. 
 

It has been decided that only 40% of all the test cases 

can be executed in each test session. 
 

Number of lines of code in the program of Heap Sort = 

60. Number of test cases for the program of Heap Sort = 

9. Number of test cases which can be executed in a test 

session = 40% of the total test cases = 40% of 9 = 

4(approx.) 
 

Now, for session k=1: 

Step 1: Extract history from database: The test cases 

are extracted from the ’testcases.txt’ file into the 

program which is developed to implement the proposed 

algorithm. Before the first session, for each modified 

line, the value of parameters, namely hk, eck, fck, prk 

and prk 1, is set to 0. For each modified line the value of 

parameter x is set to 2. 
 

Step 2: Input line numbers of modified lines As is 

mentioned in Figure 3, the input interface of the 

program takes as input the line number of modified 

lines i.e. 12, 20, 24, 30, 38, 46. 

Step 3: Find max coverage and max coverage test 

case Code coverage of a test case T= (no. of lines in the 

test case / total number of lines in the program)* 100. 

Let’s consider Line 12, which is found in test cases: T1, 

T2. 

So, Code coverage of test case T1 = (4 / 100) * 100                       

= 4% 

Code coverage of test case T2 = (3 / 100) * 100 = 3% 

Hence, max code coverage for line 12 = 4% 
 

Since, Test case T4 is having the max code coverage 

value of 4% among all the test cases containing the line 

12. So, max code coverage test case for line 12 = T1 

As we calculated the value of max code coverage and 

found out the max code coverage test case for line 

number 12, we can similarly compute the value of max 

code coverage and find out the max code coverage test 

case for line number 20, 24, 30, 38 and 46. The results 

are: 

Max code coverage test case (MCCTC) for line 20 = 

T8, and Max Code Coverage (MCC) = (10 / 100) * 100 

= 10% 
 

MCCTC for line 24, 30, 38 and 46 are T9, T8, T3 and 

T7 respectively. The MCC for line 24, 30, 38 and 46 are 

7%, 10%, 4% and 7% respectively. 
 

Step 4: Calculate priority values for modified lines 

For session k=1, the status of all the parameters is as 

shown in the Table 2.  

Table 2: Status of parameters before session k=1 

Line No. hk eck fck x PRk PRk-1 

12 0 0 0 2 0 4 

20 0 0 0 2 0 10 

24 0 0 0 2 0 7 

30 0 0 0 2 0 10 

38 0 0 0 2 0 4 

46 0 0 0 2 0 7 
 

Now, substituting the values of hk, eck, fck, x and PRk-1 in 

Eq. (3), Eq. (2) and Eq. (1) from Table 2, to calculate 

the corresponding value of PRk for lines 12, 20, 24, 30, 

38 and 46. We get: PRk [12] = 2.0, PRk [20] = 5.0, PRk 

[24] = 3.5, PRk [30] = 5.0, PRk [38] = 2.0 and PRk [46] = 

3.5. 
 

Step 5: Prioritize the modified lines in order of 

priority value Based on the priority values calculated in 

step 4, modified lines in order of priority as per PRk 

values are: 20, 30, 24, 46, 12 and 38. 
 

Table 3: Lines in order of priority and max code coverage test 

case for each line after session k=1 

 

Step 6: Prioritize the test cases in order of modified 

lines  
As can be seen from Table 3, Max code coverage test 

case for Line 20 is T8, Line 30 is T8, Line 24 is T9, 

Line 46 is T7, Line 12 is T1 and line 38 is T3. Max 

coverage test cases in order of their respective modified 

lines after ignoring the duplicates are:  T8, T8, T9, T7, 

T1 and T3. Removing the repeated test case T8 from the 

second place, we get T8, T9, T7, T1 and T3. 
 

Step 7: Output prioritized the test cases  

The final output for session k=1 is T8, T9, T7, T1 and 

T3.  

Since, 40% of the total test cases can be executed i.e. 4 

test cases. Test cases T8, T9, T7 and T1 are executed. 

T3 is left out from the execution in session 1. During 

execution the test cases T8, T9, T7 and T1 fail. 

Debugging reveals fault at lines 20, 30, 24, 46 and 12. 

These errors are subsequently fixed.  
 

Session 2: (For session k=2) Lines to be prioritized in 

session k=2 are 20, 30, 24, 46, 12 and 38. The status of 

parameters shown in Table 3 will be used in session 2. 

All the seven steps of the proposed approach are 

followed for k=2 

Table 4: Status of parameters before session k=2 

Line No. hk eck fck x PRk PRk-1 

12 0 1 1 1 0 4 

20 0 1 1 1 0 10 

24 0 1 1 1 0 7 

Lines in order 

of priority 

based on the 

value of PRk 

20 30 24 46 12 38 

Max Coverage 

Test case for 

each modified 

line  

T8 T8 T9 T7 T1 T3 

Proc. of the Intl. Conf. on Advances In Computing, Communication and Information Technology - CCIT 2014. 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-1-63248-010-1 doi: 10.15224/ 978-1-63248-010-1-21 

 

106 



30 0 1 1 1 0 10 

38 1 0 0 2 0 4 

46 0 1 1 1 0 7 
 

Table 5: Lines in order of priority and max code coverage test 

case for each line after session k=2 
 

 

The final output for session k=2 is as given in Table 5. 

Max coverage test cases in order of their respective 

modified lines after ignoring the duplicates are:  T8, T9, 

T7, T1 and T3 i.e. test cases appear in the same 

sequence of priority as in session 1. Since only 40% of 

the total test cases i.e. 4 test cases can execute, the test 

cases T8, T9, T7 and T1 are again executed in the given 

order as in session 1. No new fault is found in session 2 

since the lines 20, 30, 24, 46 and 12 have already been 

fixed in session k = 1. 
 

Session 3: (For session k=3) the status of parameters 

shown in Table 4 will be used in session 3. 
 

Table 6: Status of parameters before session k=3 

Line No. hk eck fck x PRk PRk-1 

12 0 2 1 2 0 2 

20 0 2 1 2 0 5 

24 0 2 1 2 0 3.5 

30 0 2 1 2 0 5.0 

38 2 0 0 2 0 2.0 

46 0 2 1 2 0 3.5 
 

Table 7: Lines in order of priority and max code coverage test 

case for each line after session k=3 

Max coverage test cases in order of their respective 

modified lines after ignoring the duplicates in session k 

= 3 are: T8, T3, T9, T7 and T1. The four test cases of 

higher priority i.e.  T8, T3, T9 and T7 are executed. Test 

case T3 fails. The program is debugged and error is 

revealed at line number 38. The error at line number 38 

is then corrected.  
 

Finally, all the errors were revealed in 3 sessions. 

Hence, we can conclude that the proposed approach has 

a better rate of fault detection than the Alireza approach. 
 

Summary for case study I: 

The number of sessions required to reveal all the errors 

= 3.  

5 out of 6 revealed in first session. 

Percentage of error revealed in first session = (5/6) * 

100 = 83.3% 

Total number of test cases executed in all the three 

sessions = no. of test cases executed in session 1 + no. 

of test cases executed in  session 2 + no. of test cases 

executed in first session 3  

= 4 + 4 + 4 

=12 

 

Case Study II 
 

We apply the proposed algorithm on program 

containing even more number of lines of code than the 

one considered in case study II. We consider a program 

of linked list. 
 

Number of lines of code in the program of Linked 

List = 382 

Number of test cases for the program of Linked List 

= 51 

Number of test cases which can be executed in a test 

session = 40% of the total test cases 

= 40% of 51 = 20(approx.) 
 

Summary of case study II: 

Total number of test cases = 51 

Total number of test cases executed to reveal all the 

errors = 14 (in one session) 

This concludes that all the errors are revealed by 

executing just 27.45% of the total test cases and that too 

in just one session. 
 

Summary result of case study I and case study II: 
 

In case of programs with less number of lines of code as 

in case study II, most of the errors are revealed in the 

first few sessions after executing a very small 

percentage of test cases of the total number of test cases 

in all the sessions together. As can be seen in case study 

II, that 5 out 6 (83% approx.) errors get revealed in 

session 1. It is only to reveal the remaining one error 

that the number of session extends to 3. 
 

3   Performance Analysis: 

Proposed approach is illustrated by ten programs of 

Java, C and C++ based platforms. After that, we 

compared our proposed approach with Alireza et al. 

approach. For comparison, we applied our proposed 

approach as well as Alireza approach on eight example 

programs and five faults were seeded in each of the 

programs with multiple sessions of regression test.  

Results in Table 8 shows the faults detected in each 

session by our proposed approach and Alireza approach. 
 

4   Conclusion & Future Work 

Proposed approach is helpful in early detection of fault. 

The proposed approach brings out those test cases to the 

front which are relevant to the modifications made. This 

is because; the proposed approach is able to prioritize 

test cases in less number of iterations. The results 

establish that number of sessions required for running 

the test cases reduces by almost 33%. For smaller 

programs, reduction in number of test cases that are 

required to be executed from the total available set is 

not substantial but for larger programs, the reduction 

Lines in order 

of priority 

based on the 

value of PRk 

20 30 24 46 12 38 

Max Coverage 

Test case for 

each modified 

line  

T8 T8 T9 T7 T1 T3 

Lines in order 

of priority 

based on the 

value of PRk 

20 30 38 24 46 12 

Max Coverage 

Test case for 

each modified 

line  

8 8 3 9 7 1 

Proc. of the Intl. Conf. on Advances In Computing, Communication and Information Technology - CCIT 2014. 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-1-63248-010-1 doi: 10.15224/ 978-1-63248-010-1-21 

 

107 



seen is to the tune of about 70 %. The proposed 

approach is able to locate a high percentage of the faults 

in the first few test sessions. Thus the proposed 

approach is able to significantly reduce the regression 

test effort required either during bug fixing phase or 

during maintenance.  
 

References 
[1]  H. Papadimitriou and K. Steiglitz. Combinatorial optimization: 

algorithms and complexity. Courier Dover Publications, 1998. 

[2]  T. Y. Chen and M. F. Lau.: Dividing strategies for the 

optimization of a test suite. Information Processing Letters, Vol. 

60(3). (1996) 135–141. 

[3]  M. J. Harrold, R. Gupta, and M. L. Soffa.: A methodology for 

controlling the size of a test suite. ACM Transactions on 

Software Engineering and Methodology (TOSEM). Vol. 2(3). 

ACM (1993) 270–285. 

[4]  J. R. Horgan and S. London.: A data flow coverage testing tool 

for C. In IEEE Proceedings of the Second Symposium on 

Assessment of Quality Software Development Tools. IEEE 

(1992) 2–10. 

[5]  Alireza Khalilian, M. Abdollahi Azgomi, and Y. Fazlalizadeh.: 

An improved method for test case prioritization by incorporating 

historical test case data. Science of Computer Programming. 

Vol. 78(1). (2012) 93–116. 

[6]  J.-M. Kim and A. Porter.: A history-based test prioritization 

technique for regression testing in resource constrained 

environments. In Proceedings of the 24rd IEEE International 

Conference on Software Engineering. ICSE (2002) 119–129. 

[7]  D. Leon and A. Podgurski.: A comparison of coverage-based 

and distribution-based techniques for filtering and prioritizing 

test cases. In 14th IEEE International Symposium on Software 

Reliability Engineering. ISSRE (2003) 442–453. 

[8]  M. Marr´e and A. Bertolino.: Using spanning sets for coverage 

testing. IEEE Transactions on Software Engineering. Vol.  

9(11). IEEE (2003) 974–984. 

[9]  J. Offutt, J. Pan, and J. M. Voas.: Procedures for reducing the 

size of coverage based test sets. In Proceedings of the 12th  

International  Conference  Testing Computer Software. Citeseer 

(1995) 111-123. 

[10]  K. Aggrawal, Y. Singh, and A. Kaur.: Code coverage based 
technique for prioritizing test cases for regression testing. ACM 

SIGSOFT Software Engineering Notes, Vol. 29(5). ACM (2004) 

1–4. 

[11]  G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong.: An 

empirical study of the effects of minimization on the fault 

detection capabilities of test suites. In Proceedings of the IEEE 

International Conference on Software Maintenance. IEEE (1998) 

34–43. 

[12]  G. Rothermel, M. J. Harrold, J. Von Ronne, and C. Hong.: 

Empirical studies of test-suite reduction. Software Testing 

Verification and Reliability. Vol 12(4). (2002) 219–249. 

[13]  G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold.: 

Prioritizing test cases for regression testing. IEEE Transactions 

on Software Engineering. Vol. 27(10). IEEE (2001) 929–948. 

[14]  W. E.Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini.: Test 

set size minimization and fault detection effectiveness: A case 

study in a space application. Journal of Systems and Software. 

Vol. 48(2). (1999) 79–89. 

[15]  S. Yoo and M. Harman.: Regression testing minimization, 

selection and prioritization: a survey. Software Testing, 

Verification and Reliability. Vol. 22(2). (2012) 67–120. 

[16]  S.Schach. Software Engineering. Aksen Associates, Boston, 

MA, 1992.  

[17]  G. Rothermel and M. J. Harrold. Analyzing regression test 

selection techniques. Software Engineering, IEEE Transactions 

on, 22(8):529–551, 1996 

[18]  Lee, John AN, and Xudong He. "A methodology for test 

selection." Journal of Systems and Software 13.3 (1990): 177-

185. 

[19]  Agrawal, Hiralal, Joseph Robert Horgan, Edward W. Krauser, 

and Saul London. "Incremental Regression Testing." In ICSM, 

vol. 93, pp. 348-357. 1993.. 

[20]  Binkley, David. "Semantics guided regression test cost 

reduction." Software Engineering, IEEE Transactions on 23.8 

(1997): 498-516. 

[21]  Gupta, Rajiv, Mary Jean Harrold, and Mary Lou Soffa. "An 

approach to regression testing using slicing." Software 

Maintenance, 1992. Proceerdings., Conference on. IEEE, 1992. 

[22]  Rothermel, Gregg, and Mary Jean Harrold. "A safe, efficient 

regression test selection technique." ACM Transactions on 

Software Engineering and Methodology (TOSEM) 6.2 (1997): 

173-210. 

[23]  Jones, James A., and Mary Jean Harrold. "Test-suite reduction 

and prioritization for modified condition/decision 

coverage." Software Engineering, IEEE Transactions on 29.3 

(2003): 195-209. 

 

Table 8: Proposed Approach Results 
Program Line No. modified Session No. Faulty Line detected by 

Proposed approach 

Faulty Line 

detected by Alireza 

approach 

No. Of Sessions in  

Proposed approach 

No. Of Sessions 

in Alireza 

approach 

Branch Coverage 

Sample Program 

26, 30, 35, 40, 8 S1 

S2 

26, 30, 35 

 40, 8 

26, 30 

35, 40 

2 2 

Bank Account 6, 17, 22, 24, 27 S1 

S2 

S3 

17, 22, 24, 27 

- 

 6 

17, 22, 24, 27 

- 

 6 

3 3 

Library Managment 

 

199, 172, 223, 143, 

126 

S1 

S2 

S3 

199, 172,223  

172, 126 

199, 172 

223, 172, 

126 

2 3 

Kruskal Algorithm 97, 93, 106, 47, 110 S1 

 S2 

97, 106, 110 

 47, 93 

97, 106, 110 

47, 93 

3 3 

Payroll Management 

System 

70, 118, 124, 207, 

231 

S1 

S2 

S3 

124, 118, 231, 207 

 70 

- 

124, 118, 231  

70 

 207 

2 3 

Airline Reservation 

System 

27,43, 64,97,126 S1 

S2 

S3 

27,43, 64 

97,126 

- 

27,43, 64 

- 

97,126 

2 3 

Tic-tac toe 159, 164, 191, 195, 

261 

S1 

S2 

S3 

159, 164, 191, 195 

261 

- 

159, 164 

191, 195 

 261 

2 3 

Student Records 

Management System 

24, 27, 66, 69, 80 S1  

S2 

S3 

24, 27, 66 

 69 

 80 

24, 27 

 66, 69 

 80 

3 3 

 

Proc. of the Intl. Conf. on Advances In Computing, Communication and Information Technology - CCIT 2014. 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-1-63248-010-1 doi: 10.15224/ 978-1-63248-010-1-21 

 

108 


