
International Conference on Advanced Computing, Communication and Networks’11

93

Efficient Utilization of Resources for Hierarchical Scheduling of Real-Time Systems

Mr.P.Vijaykumar M.E. (Asst.Prof)

Department of Electronics and Communication

Engineering

SRM University

Chennai. India

 vijay_at23@rediffmail.com

Mr.R.Vigneshwar M.Tech
Department of Electronics and Communication

Engineering

SRM University

Chennai. India

vigneshwar87@gmail.com

Abstract- The Hierarchical Scheduling Framework

(HSF) has been introduced as a design-time

framework to enable compositional schedulability

analysis of embedded software systems with real-

time properties. In this paper, a software system

consists of a number of semi-independent

components called Subsystems. Subsystems are

developed and later integrated to form a system. To

support this design process, the proposed methods

allow non-intrusive configuration and tuning of

subsystem timing-behaviour via subsystem

interfaces for selective scheduling parameters.

Three overrun methods to handle overrun due to

resource sharing between subsystems in the HSF.

The analysis is generalized to allow for Rate-

Monotonic (RM) scheduling. Also, a further

contribution to this is the technique of calculating

resource-holding times within the framework

under different scheduling algorithms; the

resource-holding times being an important

parameter in global schedulability analysis.

Index Terms- Hierarchical Scheduling, operation

system, real time system, scheduling, resource

sharing, synchronization.

I. INTRODUCTION

The Hierarchical Scheduling Framework (HSF)

has been introduced to support hierarchical resource

sharing among applications under different scheduling

services. The hierarchical scheduling framework can

be generally represented as a tree of nodes, where each

node represents an application with its own scheduler

internal workloads (e.g. threads), and resources are

allocated from a parent node to its children nodes.

The HSF provides means of decomposing a

complex system into well-defined parts. In essence,

the HSF provides a mechanism for timing-predictable

composition of course-grained components or

subsystem. In HSF, a subsystem provides an interface

that specifies the timing properties of the subsystem

precisely [1]. This means that subsystems can be

independently developed and tested, and later

assembled without introducing unwanted temporal

behaviour. Also, the HSF facilitates reusability of

subsystem in timing-critical and resource constrained

environments, since the well defined interfaces

characterize their computational requirements.

Earlier efforts have been made in supporting

compositional subsystem integration in the HSFs,

preserving the independently analyzed schedulability

of individual subsystems. One common assumption

shared by earlier studies is that subsystems are

independent. This paper relaxes the assumption by

addressing the challenge of enabling efficient

compositional integration of independently developed

semi-independent subsystems interacting through

sharing of mutual exclusion access logical resources.

Here, semi-independence means that subsystems are

allowed to synchronize by the sharing of logical

resources.

To enable sharing of logical resources in HSFs,

Davis and Burns proposed a synchronization protocol

mailto:vijay_at23@rediffmail.com
mailto:vigneshwar87@gmail.com

International Conference on Advanced Computing, Communication and Networks’11

94

implementing the overrun mechanism, allowing the

subsystem to overrun to complete the execution of a

critical section [2]. Two version of overrun

mechanisms were presented in [2], called overrun

without payback and overrun with payback, and in the

remainder of this paper these overrun mechanism are

called Basic Overrun (BO), and Basic Overrun with

Payback (PO) respectively. The study presented by

Davis and Burns provides schedulability analysis for

both overrun mechanisms; however, the schedulability

analysis does not allow independent analysis of

individual subsystems. Hence the presented

schedulability analysis does not naturally support

composability of subsystems.

In addition to these overrun mechanism, a new

overrun mechanism has been presented, called

Enhanced Overrun (EO) that potentially increases

schedulability within a subsystem by providing CPU

allocation more efficiently.

II. RELATED WORK

A. Hierarchical Scheduling

The HSF for real-time systems, originating in

open systems [4], has been receiving an increasing

research attention. Since Deng and Liu [4] introduced

a two-level HSF, its schedulability has been analyzed

under fixed-priority global scheduling [5] and under

Earliest Deadline First based global scheduling[6],[7].

B. Resource Sharing

In many real systems, tasks are semi-independent,

interfacing with each other through mutually exclusive

resource sharing. Many protocols have been

introduced to address the priority inversion problem

for semi-independent tasks, including the Priority

Inheritance Protocol (PIP) [9], the Priority Ceiling

Protocol (PCP) [10], and Stack Resource Policy (SRP)

[11]. There have been studies on extending SRP for

HSFs, for sharing of logical resources within a

subsystem [5], [12] and across the subsystems [2],

[13]. David and Burns [2] proposed the Hierarchical

Stack Resource Policy (HSRP) supporting sharing of

logical resources on the basis of an overrun

mechanism. Behnam et al. [13] proposed the

Subsystem Integration and Resource Allocation Policy

(SIRAP) protocol that supports subsystem integration

in the presence of shared logical resources, on the

basis of skipping. Lipari et al. proposed the Band

Width Inheritance protocol (BWI) which extends the

resource reservation framework to subsystems where

tasks can share resources. The BWI approach based on

using the Constant Bandwidth Server (CBS) algorithm

together with a technique that is derived from the PIP.

Particularly, BWI is suitable for systems where the

execution time of a task inside a critical section cannot

be evaluated.

III. SYSTEM MODEL AND BACKGROUND

A. Resource Sharing in the HSF

The HSF has been introduced to support CPU

time sharing among applications under different

scheduling policies. Here a two level hierarchical

scheduling framework is considered, which works as

follow: a global scheduler allocates CPU time to

subsystems, and a local scheduler subsequently

allocates CPU time to its internal tasks.

Fig. 1. Two-level HSF with resource sharing.

International Conference on Advanced Computing, Communication and Networks’11

95

 Having such a HSF also allows for the

sharing of logical resources among tasks in a

mutually exclusive manner (see fig.1). Specifically,

tasks can share local logical resources within a

subsystem as well as global logical resources across

subsystems. This work focuses around mechanism

for sharing of global logical resources in a HSF,

while local logical resources can be supported by

traditional synchronization protocols such as SRP.

B. Virtual Process Models

The notion of real-time virtual processor

model was introduced by Mok et al. [8] to characterize

the CPU allocations that a parent node provides to a

child node in a HSF. The CPU supply of a virtual

processor model refers to the amount of CPU

allocations that the virtual processor model can

provide. The supply bound function of a virtual

processor model calculates its minimum possible CPU

supply for any given time of length t

Fig.2. The supply bound function of a periodic virtual

processor model

The periodic virtual processor model Г(P,Q)

was proposed by Shin and Lee [1] to characterize

periodic resource allocations where P is a period (P >

0) and Q is a periodic allocation time (0 < Q ≤ P).

The supply bound function sbfГ (t) of the

periodic virtual process model Г (P, Q) was given in

[1] to compute the minimum resource supply during

an interval of length t

 (1)

Where k=max ([(t-(P-Q))/P], 1) and W denotes an

interval [(k+1) P-2Q, (k+1) P-Q]. Note that an interval

of length t may not begin synchronously with the

beginning of period P, as shown in fig.2; the interval

of length t can start in the middle of the period of a

periodic virtual processor model Г (P, Q). BD

represent the longest possible blackout duration during

which the periodic virtual processor model may

provide no resource allocation at all.

C. Stack Resource Policy (SRP)

To be able to use SRP in the HSF, its

associated terms are extended as follows:

 Pre-emption level. Each task Ʈi has a pre-

emption level equal to i=1/Di, where Di is

the relative deadline of the task. Similarly

each subsystem Ss has an associated pre-

emption level equal to Πs=1/P s, where P s is

the subsystems per-period deadline.

 Resource Ceiling. Each globally shared

resources Rj is associated with two types of

resource ceilings; one internal resource

ceiling for local scheduling rcj = max { i | Ʈi

accesses Rj} and one external resource ceiling

for global scheduling.

 System/Subsystem ceilings System/Subsystem

ceilings are dynamic parameters that change

International Conference on Advanced Computing, Communication and Networks’11

96

during runtime. The system/subsystem ceiling

is equal to the currently locked highest

external/internal resource ceiling in the

system/subsystem.

D. System Model

In this paper a periodic task model Ʈi (Ti, Ci,

Di,{ci,j}) is considered, where Ti, Ci, Di , represent the

task’s period, worst-case execution time (WCET) and

relative deadline, respectively, where Di ≤ Ti, and {ci,j}

is the set of WCETs within critical sections associated

with task Ʈi .

Looking at a shared resources Rj, the resource

holding time hj, i of a task Ʈi is defined as the time given

by the task’s maximum execution time inside a critical

section plus the interference of higher priority tasks

having pre-emption level greater than the internal

ceiling of the locked resource.

A subsystem Ss S, where S is the whole system

of subsystems, is characterized by a task set Ʈs that

contain ns task and a set of internal resource ceiling

RCs inherent from internal tasks using the globally

shared resources. Each subsystem Ss is assumed to

have an RM local scheduler, and the subsystems are

scheduled according to RM on a global level. The

collective CPU resource requirements by each

subsystem Ss is characterized by its interface defined

as (Ps, Qs, Hs), where Ps is the subsystems period, Qs is

its execution requirement budget, and Hs is the

subsystem maximum resource holding time i.e., Hs =

max {hj, i | Ʈi Ʈs accesses Rj }.

IV. SCHEDULABILITY ANALYSIS

This section presents the schedulability analysis of

the HSF, starting with local schedulability analysis

needed to calculate subsystem interfaces, followed by

global schedulability analysis. The analysis presented

assumes that SRP is used for synchronization on the

local level.

A. Local Schedulability Analysis

Let request bound function RBF (i, t) of a task Ʈi

for RM scheduler is

RBF (i, t) = Ci + Σ Ʈk ∈ HP(i) [t / Pk].Ck (2)

Where HP (i) is the set of tasks with priorities

higher than that of Ʈi. Note that t can be selected

within a finite set of scheduling points.

B. Global Schedulability Analysis

Under global RM scheduling, the subsystem load

bound function is as follows [on the basis of a similar

reasoning of [4]]:

LBF (t) = RBF (t) + Bs (3)

Where

RBF (t) = Qs + Σ S ∈ HPS(s) [t / Pk].Qk (4)

Where HPS(s) is the set of subsystem with priority

higher than that of Ss. Let Bs denote the maximum

blocking imposed to a subsystem Ss, when it is

blocked by lower-priority subsystems

Bs = max {Hj | Sj }

Where LPS (Ss) is the set of subsystems with priority

lower than that of Ss.

V. OVERRUN MECHANISM

This section explains three overrun

mechanism that can be used to handle budget expiry

during a critical section in the HSF. Consider a global

scheduler that schedules subsystems according to their

periodic interfaces (Ps, Qs, and Hs). The subsystem

budget Qs, is said to expire at the point when one or

International Conference on Advanced Computing, Communication and Networks’11

97

more internal tasks have executed a total of Qs, time

units within the subsystems period Ps. Once the budget

is expired, no new task within the same subsystem can

initiate its execution until the subsystem’s budget is

replenished. The replenishment takes place in the

beginning of each subsystem period, where the budget

is replenished to a value of Qs.

Budget expiration may cause a problem if it

happens while a job Ji of a subsystem Ss is executing

within a critical section of a global shared resource Rj .

If another job Ji, belonging to another subsystem, is

waiting for the same resource Rj, this job must still

wait until Ss is replenished again so Ji can continue to

execute and finally release the lock on resource Rj .

This waiting time exposed to Jk can be potentially very

long, causing Jk to miss its deadline.

In this paper, an overrun mechanism is

considered as follows; when the budget of subsystem

Ss expires and Ss has a job Ji that is still locking a

globally shared resource, job Ji continues its execution

until it release the locked resource. The extra time that

Ji needs to execute after the budget of Ss expires is

denoted as overrun time Ɵ. The maximum Ɵ occurs

when Ji locks a resource that gives the longest resource

holding time just before the budget of Ss expires.

Here two versions of overrun mechanism [2]

are considered;

1) The overrun mechanism with payback,

introduced as PO and later EO: whenever

overrun happens, the subsystem Ss

payback Ɵ in its next execution instant,

i.e., the subsystem budget Qs will be

decreased by Ɵ for the subsystem’s

execution instant following the overrun.

2) The overrun mechanism without

payback, introduced as BO: in this

version of the overrun mechanism, no

further actions will be taken after the

event of an overrun.

A. Basic Overrun Mechanism

a) PO-Basic Overrun with Payback: First, the

request bound function of a subsystem with the

basic overrun mechanism with payback is

extended. Looking at the PO mechanism in a

subsystem Ss, the maximum contribution on RBF

(t) for RM scheduling is Hs. When Ss overrun with

its maximum, which is Hs, the subsystem’s

resource demand within the subsystem period Ps

will be increased to Qs + Hs. Following this budget

the next period will be decreased to Qs – Hs due to

the payback mechanism. Then, suppose that the

subsystem overruns again. Now during the next

subsystem period, the subsystem’s resource

demand will be Qs – Hs + Hs = Qs. Here it is easy

to observe that the subsystem’s resource demand

will be at most kQs + Hs during k subsystem

periods. When using a global RM scheduler, the

request bound function RBF
o
(t) is

RBF
o
 (t) = (Q

o
s + Hs) + ΣSk ∈ HPS(S) ([t/Pk] (Q

o
k) + Hk)

(4)

b) BO-Basic overrun without payback: This version

of overrun does not payback the budget after overrun

happens. This means that the subsystem resource

demands within period of Ps can be up to Qs + Hs for all

periods considering that the maximum overrun will

happen every period, which is the worst case scenario.

Then, for global RM scheduler, the request bound

function RBF
#
(t) is

RBF
#
 (t) = (Q

#
s + Hs) + ΣSk ∈ HPS(S)([t/Pk] (Q

#
k+ Hk)

(5)

International Conference on Advanced Computing, Communication and Networks’11

98

B. Enhanced Overrun Mechanism

The PO mechanism works with a modified

request bound function RBF
o
(t) that is less efficient in

terms of CPU resource usage compared with the

original RBF (t). While for the BO mechanism, the

request bound function will be increased by Qs + Hs in

all periods which may require more resources as well.

In the following, an enhanced overrun mechanism

(EO) is proposed. This new overrun mechanism makes

it possible to improve SBF
o
(t) and at the same time the

request bound function will be Qs + Hs for the first

instance and then only Qs for the following periods

when applying global schedulability analysis.

The EO mechanism is based on imposing an

offset (delaying the budget replenishment of

subsystem) equal to the amount of an overrun (Ɵs =

Hs) to the execution instant that follows a subsystem

overrun. As shown in Fig.3(c), the execution of the

subsystem will be delayed by Ɵs after a new period

followed by overrun even if that subsystem has the

highest priority at that time. By this the maximum BD

will be decreased by 2(P-Q) compared with PO.

 Under RM scheduler, the offset imposed by

the EO mechanism for each subsystem Ss can be

modelled as a release jitter Js with the range of [0, Hs]

so Js = Hs. The upper bound function of RBF
*
(t) is

RBF
*
(t) = (Q

*
s + Hs) + ΣSk ∈ HPS(S)([t + Jk/Pk] (Q

*
k)+ Hk)

(6)

B. System Level Comparison

 In doing a comparison among the three

approaches, System load is defined as a quantitative

measure to represent the minimum amount of CPU

allocations necessary to guarantee the schedulability of

the system S. Then, the impact of each overrun

mechanism on the system load can be investigated

respectively. When using RM as a local scheduler, the

system load is computed as follows:

Load sys = max (RBF(t)) / t (7)

VI. COMPARISON OF OVERRUN

MECHANISMS

 The comparison between the three overrun

mechanisms in terms of request bound function is

shown below:

1) PO versus BO: comparing (4) and (5), it is

show that RBF
o
 (t) > RBF

#
(t) for 0≤ t ≤ Ps.

The reason is that the interface from other

higher priority tasks is always Qk + Hk for

both cases from Q
o
s > Q

#
s. If t > Ps then the

mechanism that requires a lower request

bound function is different depending on the

subsystem parameters. It can be concluded

Fig.3. Basic and enhanced overrun mechanisms.

(a) Basic overrun mechanism with payback (PO)

(b)Basic overrun mechanism without payback (BO)

(c)Enhanced overrun mechanism (EO)

International Conference on Advanced Computing, Communication and Networks’11

99

that if the subsystem periods of all subsystem

periods of all subsystems are equal, then the

BO mechanism will require less system load

than using the PO mechanism.

2) BO versus EO: comparing (5) and (6), it is

show that RBF
*
(t) ≥ RBF

#
(t) for 0≤ t ≤ Ps. If t

> Ps then finding the best mechanism that

requires the least system load depends on the

system parameters.

3) PO versus EO: comparing (4) and (6), it can

be concluded that RBF
o
 (t) > RBF

*
(t) when t

is in the range kPs - Hs ≥ t < kPs and RBF
o
 (t) ≥

RBF
*
(t) when t is in (k-1) Ps ≥ t < (k) Ps – Hs,

where k is an integer value greater and k>0.

The following example show some of the cases

discussed above:

Example 1: Suppose that a system S consists of three

subsystems with parameters as shown below:

Subsystem Ps Q
o

s Q
#

s Q
*

s Hs

S1 0 4.7 4 4 2

S2 5 1.5 1.2 1.3 4

S3 20 3.8 3.4 3.6 4

The global scheduler is Rate Monotonic. Using

the PO mechanism load sys = 0.79 at t= 20, using the

BO mechanism load sys= 0.81 at t = 20, and for the EO

mechanism loadsys = 0.69 at t = 15.

Example 2: Suppose that a system S consists of three

subsystems with parameters as shown in the next

table:

The global scheduler is Rate Monotonic. Using

the PO mechanism load sys = 0.56 at t= 15, using the

BO mechanism load sys= 0.6 at t=20, and for the EO

mechanism load sys = 0.65 at t=13.

Subsystem Ps Q
o
s Q

#
s Q

*
s Hs

S1 12 2 1.5 2 1

S2 15 3.1 2.1 3 2

S3 20 5.1 4.8 5 3

VII. COMPUTING RESOURCE HOLDING TIME

 This section explain how to compute the

resource holding time hj,i, a very important parameter

in the global analysis. The resource holding time is the

time given by the tasks maximum execution time

inside a critical section plus the interference of higher

priority tasks having pre-emption level greater than the

internal ceiling of the locked resource. This means that

the internal resource ceiling rcj is one of the

parameters that can have great effect on resource

holding times of the globally shared resources. The

resource holding time hj,i, of a shared resource Rj

accessed by Ʈi is the smallest positive time t
*
 such that

wj(t
*
) = t

*
, with wj computed as follows:

Wj (t) = CXj + ΣƮk ∈ U [i/Tk]. Ck (8)

Where CXj,i = max{ci,j} is the maximum execution

time of task Ʈi inside critical section of the resource

and U is the set of tasks.

 Now for hierarchical scheduling framework

that uses the overrun mechanism, the following

equation shows how to evaluate resource holding time

for a task Ʈi that access the resource Rj

hj,i = cxj,i + Σ Ʈk ∈ U ck (9)

the difference between (7) and (8) is all the tasks that

can pre-empt inside the critical section are assumed to

be executed only once. The reason for why it is safe to

assume only one execution of each pre-empting task

inside the critical section is given in the following

lemma, showing that if a task executes more than one

International Conference on Advanced Computing, Communication and Networks’11

100

time inside the critical section, the subsystem will

become unschedulable.

Lemma A: For a subsystem that uses an

overrun mechanism to arbitrate access to a global

shared resource under the periodic virtual processor

model, each task that is allowed to pre-empt the

execution of another task currently inside the critical

section of a globally shared resource can, in the worst

case, only execute once independent if the local

scheduler is either fixed priority scheduler or dynamic

priority scheduler.

 Proof: This lemma will be proved by

contradiction to show that if more than one job of a

task pre-empts a critical section then the system

utilization will be greater than one. The following

cases are considered in the proof:

1) Ps < Tm (where Tm = min (Ti) for all i =

1........n), if the task having period Tm

executes 2 or more times inside the critical

section, this means that the resource will be

locker during this period, i.e., hj,i > Tm then hj,i

> Ps which in turn means that the CPU

utilization required by the subsystem Ss will

be Us= (Qs + hj,i)/ Ps >1.

2) If Ps ≥ Tm, sbf (t) should provide at least Cm at

time t = Tm to ensure the schedulability test

for the RM scheduler. Note that sbf (t)=0

during t [0, 2Ps – 2Qs] so, 2Ps – 2Qs + Cm ≤

Tm which means Qs
min

 ≥ Ps – Tm / 2 + Cm / 2.

Then, the minimum subsystem budget is

Qs
min

 = Ps – Tm / 2 + Cm / 2 (10)

Let us define Gs as the maximum time in

which a subsystem may not get any budget within

the subsystem period Ps because of pre-emptions

from other higher priority subsystems, then Gs= Ps

– Qs (see fig.) and substituting Qs by the minimum

subsystem budget in (10)

Gs = (Tm - Cm) / 2 (11)

Fig.4. Resource holding times for the case

The maximum number of activation of the Ʈm

within Ps while a lower priority task accessing a global

shared resource, will happen when Ʈm is release at the

beginning of the subsystem period just after the lower

priority task has locked global shared resource. Now,

let’s assume that Ʈm will execute two times while the

global shared resource is locked, then the subsystem

budget given to the subsystem within the first period

of Ʈm should be low enough such that the shared

resource will not be released before the second

activation of Ʈm. Let us define Lm as the minimum

subsystem budget that will be supplied to the

subsystem within the first period of Tm, Lm = Tm – Gs

and from (11)

Lm = (Tm + Gs)/ 2 (12)

 From Lemma A, it can be concluded that all

tasks that can pre-empt the execution of a critical

section should do so maximum one time in order to

keep the utilization of a subsystem less than one. If a

task pre-empts the execution of critical section more

than one time then it will be seen from (9). This proves

the correctness of (9) which is based on the

assumption that all task can interface only once as a

worst case while a task is in the critical section of the

resource Rj.

International Conference on Advanced Computing, Communication and Networks’11

101

VIII. CONCLUSION

 This paper presents three different overrun

mechanisms that all can handle the problem of sharing

of logical resources in a hierarchical scheduling

framework while at the same time supporting

independent subsystem development (open

environments). Compared to previous work [3], here

results have been generalized by also allowing for the

RM scheduling algorithm for both local and global

schedulers, which is suitable for usage in open

environments. In addition, a third overrun mechanism,

basic overrun without payback (BO), is included in the

comparison between the overrun mechanisms. The

results from this comparison show that it is not trivial

to evaluate, in the general case, which overrun method

that is better than the other, as their impact on the CPU

utilization is highly dependent on global system

parameters such as subsystem periods and budgets.

Finally, the calculation of re-source holding times

when using the periodic virtual processor model with

RM scheduling algorithms is presented, as the

resource holding time is a very important parameter in

the global schedulability analysis.

Future work includes comparing the enhanced

overrun mechanism (EO) with other synchronization

mechanisms such as BWI, the BROE server and

SIRAP. In addition the three overrun mechanism and

comparing the implementation overhead of each

mechanism is important. Finally, as the global

schedulability analysis gives an upper bound for EO, it

will be interesting to find an exact or less pessimistic

schedulability analysis.

REFERENCES

[1] I. Shin and I. Lee, “Periodic resource model for

compositional real-time guarantees,” in Proc. 24th IEEE

Int. Real-Time Syst. Symp. (RTSS’03), Dec. 2003, pp. 2–13.

[2] R. I. Davis and A. Burns, “Resource sharing in

hierarchical fixed priority pre-emptive systems,” in Proc.

27th IEEE Int. Real-Time Syst.Symp. (RTSS’06), Dec. 2006,

pp. 389–398.

[3] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “Scheduling

of semi-independent real-time components: Overrun

methods and resource holding times,” in Proc. 13th IEEE

Int. Conf. Emerging Technol. Factory Autom. (ETFA’08),

Sep. 2008, pp. 575–582.

[4] Z. Deng and J.-S. Liu, “Scheduling real-time applications

in an open environment,” in Proc. 18th IEEE Int. Real-Time

Syst. Symp. (RTSS’97), Dec. 1997, pp. 308–319.

[5] T.-W.Kuo and C.-H. Li, “A fixed-priority-driven open

environment for real-time applications,” in Proc. 20th IEEE

Int. Real-Time Syst. Symp. (RTSS’99), Dec. 1999, pp. 256–

267.

[6] G. Lipari and S. K. Baruah, “Efficient scheduling of real-

time multitask applications in dynamic systems,” in Proc.

6th IEEE Real-Time Technol. Appl. Symp. (RTAS’00), May–

Jun. 2000, pp. 166–175.

[7] G. Lipari, J. Carpenter, and S. Baruah, “A framework for

achieving inter-application isolation in multiprogrammed

hard-real-time environments,” in Proc. 21th IEEE Int. Real-

Time Syst. Symp. (RTSS’00), Dec, 2000, pp. 217–226.

[8] A. Mok, X. Feng, and D. Chen, “Resource partition for

real-time systems,” in Proc. IEEE Real-Time Technol. Appl.

Symp. (RTAS’01), May 2001, pp. 75–84.

[9] L. Sha, J. P. Lehoczky, and R. Rajkumar, “Task

scheduling in distributed real-time systems,” in Proc. Int.

Conf. Ind. Electron., Control, Instrum. (IECON’87), Nov.

1987, pp. 909–916.

[10] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-time

synchronization protocols for multiprocessors,” in Proc. 9th

IEEE Int. Real-Time Syst. Symp. (RTSS’88), Dec. 1988, pp.

259–269.

[11] T. P. Baker, “Stack-based scheduling of realtime

processes,” Real-Time Syst., vol. 3, no. 1, pp. 67–99, Mar.

1991.

[12] L. Almeida and P. Pedreiras, “Scheduling within

temporal partitions: Response-time analysis and server

design,” in Proc. 4th ACMInt. Conf. Embedded Softw.

(EMSOFT ’04), Sep. 2004, pp. 95–103.

[13] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A

synchronization protocol for hierarchical resource sharing in

real-time open systems,” in Proc. 7th ACM and IEEE Int.

Conf. Embedded Softw. (EMSOFT’07), Oct. 2007, pp. 279–

288.

.

