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Abstract- The Hierarchical Scheduling Framework 

(HSF) has been introduced as a design-time 

framework to enable compositional schedulability 

analysis of embedded software systems with real-

time properties. In this paper, a software system 

consists of a number of semi-independent 

components called Subsystems. Subsystems are 

developed and later integrated to form a system. To 

support this design process, the proposed methods 

allow non-intrusive configuration and tuning of 

subsystem timing-behaviour via subsystem 

interfaces for selective scheduling parameters. 

Three overrun methods to handle overrun due to 

resource sharing between subsystems in the HSF. 

The analysis is generalized to allow for Rate-

Monotonic (RM) scheduling. Also, a further 

contribution to this is the technique of calculating 

resource-holding times within the framework 

under different scheduling algorithms; the 

resource-holding times being an important 

parameter in global schedulability analysis. 

Index Terms- Hierarchical Scheduling, operation 

system, real time system, scheduling, resource 

sharing, synchronization. 

 

I. INTRODUCTION 

The Hierarchical Scheduling Framework (HSF) 

has been introduced to support hierarchical resource 

sharing among applications under different scheduling 

services. The hierarchical scheduling framework can 

be generally represented as a tree of nodes, where each 

node represents an application with its own scheduler 

internal workloads (e.g. threads), and resources are 

allocated from a parent node to its children nodes. 

The HSF provides means of decomposing a 

complex system into well-defined parts. In essence, 

the HSF provides a mechanism for timing-predictable 

composition of course-grained components or 

subsystem. In HSF, a subsystem provides an interface 

that specifies the timing properties of the subsystem 

precisely [1]. This means that subsystems can be 

independently developed and tested, and later 

assembled without introducing unwanted temporal 

behaviour. Also, the HSF facilitates reusability of 

subsystem in timing-critical and resource constrained 

environments, since the well defined interfaces 

characterize their computational requirements. 

Earlier efforts have been made in supporting 

compositional subsystem integration in the HSFs, 

preserving the independently analyzed schedulability 

of individual subsystems. One common assumption 

shared by earlier studies is that subsystems are 

independent. This paper relaxes the assumption by 

addressing the challenge of enabling efficient 

compositional integration of independently developed 

semi-independent subsystems interacting through 

sharing of mutual exclusion access logical resources. 

Here, semi-independence means that subsystems are 

allowed to synchronize by the sharing of logical 

resources. 

To enable sharing of logical resources in HSFs, 

Davis and Burns proposed a synchronization protocol 
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implementing the overrun mechanism, allowing the 

subsystem to overrun to complete the execution of a 

critical section [2]. Two version of overrun 

mechanisms were presented in [2], called overrun 

without payback and overrun with payback, and in the 

remainder of this paper these overrun mechanism are 

called Basic Overrun (BO), and Basic Overrun with 

Payback (PO) respectively. The study presented by 

Davis and Burns provides schedulability analysis for 

both overrun mechanisms; however, the schedulability 

analysis does not allow independent analysis of 

individual subsystems. Hence the presented 

schedulability analysis does not naturally support 

composability of subsystems. 

In addition to these overrun mechanism, a new 

overrun mechanism has been presented, called 

Enhanced Overrun (EO) that potentially increases 

schedulability within a subsystem by providing CPU 

allocation more efficiently. 

II. RELATED WORK 

A. Hierarchical Scheduling  

The HSF for real-time systems, originating in 

open systems [4], has been receiving an increasing 

research attention. Since Deng and Liu [4] introduced 

a two-level HSF, its schedulability has been analyzed 

under fixed-priority global scheduling [5] and under 

Earliest Deadline First based global scheduling[6],[7]. 

 

 

 

B. Resource Sharing 

In many real systems, tasks are semi-independent, 

interfacing with each other through mutually exclusive 

resource sharing. Many protocols have been 

introduced to address the priority inversion problem 

for semi-independent tasks, including the Priority 

Inheritance Protocol (PIP) [9], the Priority Ceiling 

Protocol (PCP) [10], and Stack Resource Policy (SRP) 

[11]. There have been studies on extending SRP for 

HSFs, for sharing of logical resources within a 

subsystem [5], [12] and across the subsystems [2], 

[13]. David and Burns [2] proposed the Hierarchical 

Stack Resource Policy (HSRP) supporting sharing of 

logical resources on the basis of an overrun 

mechanism. Behnam et al. [13] proposed the 

Subsystem Integration and Resource Allocation Policy 

(SIRAP) protocol that supports subsystem integration 

in the presence of shared logical resources, on the 

basis of skipping. Lipari et al. proposed the Band 

Width Inheritance protocol (BWI) which extends the 

resource reservation framework to subsystems where 

tasks can share resources. The BWI approach based on 

using the Constant Bandwidth Server (CBS) algorithm 

together with a technique that is derived from the PIP. 

Particularly, BWI is suitable for systems where the 

execution time of a task inside a critical section cannot 

be evaluated. 

 

III. SYSTEM MODEL AND BACKGROUND 

A.   Resource Sharing in the HSF 

The HSF has been introduced to support CPU 

time sharing among applications under different 

scheduling policies. Here a two level hierarchical 

scheduling framework is considered, which works as 

follow: a global scheduler allocates CPU time to 

subsystems, and a local scheduler subsequently 

allocates CPU time to its internal tasks. 

 

Fig. 1. Two-level HSF with resource sharing. 
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 Having such a HSF also allows for the 

sharing of logical resources among tasks in a 

mutually exclusive manner (see fig.1). Specifically, 

tasks can share local logical resources within a 

subsystem as well as global logical resources across 

subsystems. This work focuses around mechanism 

for sharing of global logical resources in a HSF, 

while local logical resources can be supported by 

traditional synchronization protocols such as SRP. 

 

B. Virtual Process Models 

The notion of real-time virtual processor 

model was introduced by Mok et al. [8] to characterize 

the CPU allocations that a parent node provides to a 

child node in a HSF. The CPU supply of a virtual 

processor model refers to the amount of CPU 

allocations that the virtual processor model can 

provide. The supply bound function of a virtual 

processor model calculates its minimum possible CPU 

supply for any given time of length t 

 

 

Fig.2. The supply bound function of a periodic virtual 

processor model 

 

The periodic virtual processor model Г(P,Q) 

was proposed by Shin and Lee [1] to characterize 

periodic resource allocations where P is a period (P > 

0) and Q is a periodic allocation time (0 < Q ≤ P).  

The supply bound function sbfГ (t) of the 

periodic virtual process model Г (P, Q) was given in 

[1] to compute the minimum resource supply during 

an interval of length t 

 (1) 

Where k=max ([(t-(P-Q))/P], 1) and W denotes an 

interval [(k+1) P-2Q, (k+1) P-Q]. Note that an interval 

of length t may not begin synchronously with the 

beginning of period P, as shown in fig.2; the interval 

of length t can start in the middle of the period of a 

periodic virtual processor model Г (P, Q). BD 

represent the longest possible blackout duration during 

which the periodic virtual processor model may 

provide no resource allocation at all. 

 

C. Stack Resource Policy (SRP)  

To be able to use SRP in the HSF, its 

associated terms are extended as follows: 

 Pre-emption level. Each task Ʈi has a pre-

emption level equal to i=1/Di, where Di  is 

the relative deadline of the task. Similarly 

each subsystem Ss has an associated pre-

emption level equal to Πs=1/P s, where P s is 

the subsystems per-period deadline. 

 Resource Ceiling. Each globally shared 

resources Rj is associated with two types of 

resource ceilings; one internal resource 

ceiling for local scheduling rcj = max { i | Ʈi     

accesses Rj} and one external resource ceiling 

for global scheduling. 

 System/Subsystem ceilings System/Subsystem                     

ceilings are dynamic parameters that change 
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during runtime. The system/subsystem ceiling 

is equal to the currently locked highest 

external/internal resource ceiling in the 

system/subsystem. 

 

 

D. System Model 

 

In this paper a periodic task model Ʈi (Ti, Ci, 

Di,{ci,j}) is considered, where Ti, Ci, Di , represent the 

task’s period, worst-case execution time (WCET) and 

relative deadline, respectively, where Di ≤ Ti, and {ci,j} 

is the set of WCETs within critical sections associated 

with task Ʈi  . 

Looking at a shared resources Rj, the resource 

holding time hj, i of a task Ʈi is defined as the time given 

by the task’s maximum execution time inside a critical 

section plus the interference of higher priority tasks 

having pre-emption level greater than the internal 

ceiling of the locked resource. 

A subsystem Ss  S, where S is the whole system 

of subsystems, is characterized by a task set Ʈs that 

contain ns task and a set of internal resource ceiling 

RCs inherent from internal tasks using the globally 

shared resources. Each subsystem Ss is assumed to 

have an RM local scheduler, and the subsystems are 

scheduled according to RM on a global level. The 

collective CPU resource requirements by each 

subsystem Ss is characterized by its interface defined 

as (Ps, Qs, Hs), where Ps  is the subsystems period, Qs is 

its execution requirement budget, and Hs   is the 

subsystem maximum resource holding time i.e., Hs = 

max {hj, i  | Ʈi   Ʈs  accesses Rj }. 

 

IV. SCHEDULABILITY ANALYSIS 

This section presents the schedulability analysis of 

the HSF, starting with local schedulability analysis 

needed to calculate subsystem interfaces, followed by 

global schedulability analysis. The analysis presented 

assumes that SRP is used for synchronization on the 

local level. 

A. Local Schedulability Analysis  

Let request bound function RBF (i, t) of a task Ʈi 

for RM scheduler is 

 

RBF (i, t) = Ci + Σ Ʈk ∈ HP(i)  [t / Pk].Ck       (2) 

 

Where HP (i) is the set of tasks with priorities 

higher than that of Ʈi. Note that t can be selected 

within a finite set of scheduling points. 

B. Global Schedulability Analysis 

Under global RM scheduling, the subsystem load 

bound function is as follows [on the basis of a similar 

reasoning of [4]]: 

LBF (t) = RBF (t) + Bs                        (3) 

Where  

RBF (t) = Qs + Σ S ∈ HPS(s) [t / Pk].Qk (4) 

 

Where HPS(s) is the set of subsystem with priority 

higher than that of Ss. Let Bs denote the maximum 

blocking imposed to a subsystem Ss, when it is 

blocked by lower-priority subsystems 

Bs = max {Hj | Sj  } 

 

Where LPS (Ss) is the set of subsystems with priority 

lower than that of Ss. 

 

 

V. OVERRUN MECHANISM 

This section explains three overrun 

mechanism that can be used to handle budget expiry 

during a critical section in the HSF. Consider a global 

scheduler that schedules subsystems according to their 

periodic interfaces (Ps, Qs, and Hs). The subsystem 

budget Qs, is said to expire at the point when one or 
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more internal tasks have executed a total of Qs, time 

units within the subsystems period Ps. Once the budget 

is expired, no new task within the same subsystem can 

initiate its execution until the subsystem’s budget is 

replenished. The replenishment takes place in the 

beginning of each subsystem period, where the budget 

is replenished to a value of Qs. 

Budget expiration may cause a problem if it 

happens while a job Ji of a subsystem Ss is executing 

within a critical section of a global shared resource Rj . 

If another job Ji, belonging to another subsystem, is 

waiting for the same resource Rj, this job must still 

wait until Ss is replenished again so Ji can continue to 

execute and finally release the lock on resource Rj . 

This waiting time exposed to Jk can be potentially very 

long, causing Jk to miss its deadline. 

In this paper, an overrun mechanism is 

considered as follows; when the budget of subsystem 

Ss expires and Ss has a job Ji that is still locking a 

globally shared resource, job Ji  continues its execution 

until it release the locked resource. The extra time that 

Ji needs to execute after the budget of Ss expires is 

denoted as overrun time Ɵ. The maximum Ɵ occurs 

when Ji locks a resource that gives the longest resource 

holding time just before the budget of Ss expires. 

Here two versions of overrun mechanism [2] 

are considered; 

1) The overrun mechanism with payback, 

introduced as PO and later EO: whenever 

overrun happens, the subsystem Ss 

payback Ɵ in its next execution instant, 

i.e., the subsystem budget Qs will be 

decreased by Ɵ for the subsystem’s 

execution instant following the overrun. 

2) The overrun mechanism without 

payback, introduced as BO: in this 

version of the overrun mechanism, no 

further actions will be taken after the 

event of an overrun. 

 

A.  Basic Overrun Mechanism 

 

a) PO-Basic Overrun with Payback: First, the 

request bound function of a subsystem with the 

basic overrun mechanism with payback is 

extended. Looking at the PO mechanism in a 

subsystem Ss, the maximum contribution on RBF 

(t) for RM scheduling is Hs. When Ss overrun with 

its maximum, which is Hs, the subsystem’s 

resource demand within the subsystem period Ps 

will be increased to Qs + Hs. Following this budget 

the next period will be decreased to Qs – Hs due to 

the payback mechanism. Then, suppose that the 

subsystem overruns again. Now during the next 

subsystem period, the subsystem’s resource 

demand will be Qs – Hs + Hs = Qs. Here it is easy 

to observe that the subsystem’s resource demand 

will be at most kQs + Hs during k subsystem 

periods. When using a global RM scheduler, the 

request bound function RBF
o
(t) is 

 

RBF
o
 (t) = (Q

o
s + Hs) + ΣSk ∈ HPS(S) ([t/Pk] (Q

o
k) + Hk)                 

(4) 

 

b) BO-Basic overrun without payback: This version 

of overrun does not payback the budget after overrun 

happens. This means that the subsystem resource 

demands within period of Ps can be up to Qs + Hs for all 

periods considering that the maximum overrun will 

happen every period, which is the worst case scenario. 

Then, for global RM scheduler, the request bound 

function RBF
#
(t) is  

 

RBF
#
 (t) = (Q

#
s + Hs) + ΣSk ∈ HPS(S)([t/Pk] (Q

#
k+ Hk)             

(5) 
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B.  Enhanced Overrun Mechanism 

The PO mechanism works with a modified 

request bound function RBF
o
(t) that is less efficient in 

terms of CPU resource usage compared with the 

original RBF (t). While for the BO mechanism, the 

request bound function will be increased by Qs + Hs in 

all periods which may require more resources as well. 

In the following, an enhanced overrun mechanism 

(EO) is proposed. This new overrun mechanism makes 

it possible to improve SBF
o
(t) and at the same time the 

request bound function will be Qs + Hs for the first 

instance and then only Qs  for the following periods 

when applying global schedulability analysis. 

 

 

The EO mechanism is based on imposing an 

offset (delaying the budget replenishment of 

subsystem) equal to the amount of an overrun (Ɵs = 

Hs) to the execution instant that follows a subsystem 

overrun. As shown in Fig.3(c), the execution of the 

subsystem will be delayed by Ɵs after a new period 

followed by overrun even if that subsystem has the 

highest priority at that time. By this the maximum BD 

will be decreased by 2(P-Q) compared with PO. 

 Under RM scheduler, the offset imposed by 

the EO mechanism for each subsystem Ss can be 

modelled as a release jitter Js with the range of [0, Hs] 

so Js = Hs. The upper bound function of RBF
*
(t) is 

RBF
*
(t) = (Q

*
s + Hs) + ΣSk ∈ HPS(S)([t + Jk/Pk] (Q

*
k)+ Hk)                  

(6) 

 

B. System Level Comparison 

 In doing a comparison among the three 

approaches, System load is defined as a quantitative 

measure to represent the minimum amount of CPU 

allocations necessary to guarantee the schedulability of 

the system S. Then, the impact of each overrun 

mechanism on the system load can be investigated 

respectively. When using RM as a local scheduler, the 

system load is computed as follows: 

Load sys = max (RBF(t)) / t             (7) 

 

VI. COMPARISON OF OVERRUN 

MECHANISMS 

 The comparison between the three overrun 

mechanisms in terms of request bound function is 

shown below: 

1) PO versus BO: comparing (4) and (5), it is 

show that RBF
o
 (t) > RBF

#
(t) for 0≤ t ≤ Ps. 

The reason is that the interface from other 

higher priority tasks is always Qk + Hk for 

both cases from Q
o
s > Q

#
s. If t > Ps then the 

mechanism that requires a lower request 

bound function is different depending on the 

subsystem parameters. It can be concluded 

Fig.3. Basic and enhanced overrun mechanisms. 

(a) Basic overrun mechanism with payback (PO) 

(b)Basic overrun mechanism without payback (BO) 

(c)Enhanced overrun mechanism (EO) 
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that if the subsystem periods of all subsystem 

periods of all subsystems are equal, then the 

BO mechanism will require less system load 

than using the PO mechanism. 

2) BO versus EO: comparing (5) and (6), it is 

show that RBF
*
(t) ≥ RBF

#
(t) for 0≤ t ≤ Ps. If t 

> Ps then finding the best mechanism that 

requires the least system load depends on the 

system parameters. 

3) PO versus EO: comparing (4) and (6), it can   

be concluded that RBF
o
 (t) > RBF

*
(t) when t 

is in the range kPs - Hs ≥ t < kPs and RBF
o
 (t) ≥ 

RBF
*
(t) when t is in (k-1) Ps ≥ t < (k) Ps – Hs, 

where k is an integer value greater and k>0. 

The following example show some of the cases 

discussed above: 

Example 1: Suppose that a system S consists of three 

subsystems with parameters as shown below: 

Subsystem Ps Q
o

s Q
#

s Q
*

s Hs 

S1 0 4.7 4 4 2 

S2 5 1.5 1.2 1.3 4 

S3 20 3.8 3.4 3.6 4 

The global scheduler is Rate Monotonic. Using 

the PO mechanism load sys = 0.79 at t= 20, using the 

BO mechanism load sys= 0.81 at t = 20, and for the EO 

mechanism loadsys = 0.69 at t = 15. 

Example 2: Suppose that a system S consists of three 

subsystems with parameters as shown in the next 

table: 

The global scheduler is Rate Monotonic. Using 

the PO mechanism load sys = 0.56 at t= 15, using the 

BO mechanism load sys= 0.6 at t=20, and for the EO 

mechanism load sys = 0.65 at t=13. 

Subsystem Ps Q
o
s Q

#
s Q

*
s Hs 

S1 12 2 1.5 2 1 

S2 15 3.1 2.1 3 2 

S3 20 5.1 4.8 5 3 

                                         

VII. COMPUTING RESOURCE HOLDING TIME 

 This section explain how to compute the 

resource holding time hj,i, a very important parameter 

in the global analysis. The resource holding time is the 

time given by the tasks maximum execution time 

inside a critical section plus the interference of higher 

priority tasks having pre-emption level greater than the 

internal ceiling of the locked resource. This means that 

the internal resource ceiling rcj is one of the 

parameters that can have great effect on resource 

holding times of the globally shared resources. The 

resource holding time hj,i, of a shared resource Rj  

accessed by Ʈi is the smallest positive time  t
*
 such that 

wj(t
*
) = t

*
, with wj computed as follows: 

Wj (t) = CXj + ΣƮk ∈ U [i/Tk]. Ck                (8) 

Where CXj,i = max{ci,j} is the maximum execution 

time of task Ʈi inside critical section of the resource 

and U is the set of tasks. 

 Now for hierarchical scheduling framework 

that uses the overrun mechanism, the following 

equation shows how to evaluate resource holding time 

for a task Ʈi that access the resource Rj  

hj,i = cxj,i + Σ Ʈk ∈ U ck                      (9) 

the difference between (7) and (8) is all the tasks that 

can pre-empt inside the critical section are assumed to 

be executed only once. The reason for why it is safe to 

assume only one execution of each pre-empting task 

inside the critical section is given in the following 

lemma, showing that if a task executes more than one 
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time inside the critical section, the subsystem will 

become unschedulable. 

Lemma A: For a subsystem that uses an 

overrun mechanism to arbitrate access to a global 

shared resource under the periodic virtual processor 

model, each task that is allowed to pre-empt the 

execution of another task currently inside the critical 

section of a globally shared resource can, in the worst 

case, only execute once independent if the local 

scheduler is either fixed priority scheduler or dynamic 

priority scheduler.  

 Proof: This lemma will be proved by 

contradiction to show that if more than one job of a 

task pre-empts a critical section then the system 

utilization will be greater than one. The following 

cases are considered in the proof: 

1) Ps < Tm (where Tm = min (Ti) for all i = 

1........n), if the task having period Tm 

executes 2 or more times inside the critical 

section, this means that the resource will be 

locker during this period, i.e., hj,i > Tm then hj,i 

> Ps which in turn means that the CPU 

utilization required by the subsystem Ss will 

be Us= (Qs + hj,i)/ Ps >1. 

2) If Ps ≥ Tm, sbf (t) should provide at least Cm at 

time t = Tm to ensure the schedulability test 

for the RM scheduler. Note that sbf (t)=0 

during t [0, 2Ps – 2Qs] so, 2Ps – 2Qs + Cm ≤ 

Tm which means Qs
min

 ≥ Ps – Tm / 2 + Cm / 2. 

Then, the minimum subsystem budget is 

Qs
min

 = Ps – Tm / 2 + Cm / 2              (10) 

Let us define Gs as the maximum time in 

which a subsystem may not get any budget within 

the subsystem period Ps because of pre-emptions 

from other higher priority subsystems, then Gs= Ps 

– Qs (see fig.) and substituting Qs by the minimum  

subsystem budget in (10) 

Gs = (Tm - Cm) / 2                       (11) 

 

Fig.4. Resource holding times for the case 

The maximum number of activation of the Ʈm 

within Ps while a lower priority task accessing a global 

shared resource, will happen when Ʈm is release at the 

beginning of the subsystem period just after the lower 

priority task has locked global shared resource. Now, 

let’s assume that Ʈm will execute two times while the 

global shared resource is locked, then the subsystem 

budget given to the subsystem within the first period 

of Ʈm should be low enough such that the shared 

resource will not be released before the second 

activation of Ʈm. Let us define Lm as the minimum 

subsystem budget that will be supplied to the 

subsystem within the first period of Tm, Lm = Tm – Gs 

and from (11) 

Lm = (Tm + Gs)/ 2                               (12) 

 From Lemma A, it can be concluded that all 

tasks that can pre-empt the execution of a critical 

section should do so maximum one time in order to 

keep the utilization of a subsystem less than one. If a 

task pre-empts the execution of critical section more 

than one time then it will be seen from (9). This proves 

the correctness of (9) which is based on the 

assumption that all task can interface only once as a 

worst case while a task is in the critical section of the 

resource Rj. 
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VIII. CONCLUSION 

 

 This paper presents three different overrun 

mechanisms that all can handle the problem of sharing 

of logical resources in a hierarchical scheduling 

framework while at the same time supporting 

independent subsystem development (open 

environments). Compared to previous work [3], here 

results have been generalized by also allowing for the 

RM scheduling algorithm for both local and global 

schedulers, which is suitable for usage in open 

environments. In addition, a third overrun mechanism, 

basic overrun without payback (BO), is included in the 

comparison between the overrun mechanisms. The 

results from this comparison show that it is not trivial 

to evaluate, in the general case, which overrun method 

that is better than the other, as their impact on the CPU 

utilization is highly dependent on global system 

parameters such as subsystem periods and budgets. 

Finally, the calculation of re-source holding times 

when using the periodic virtual processor model with 

RM scheduling algorithms is presented, as the 

resource holding time is a very important parameter in 

the global schedulability analysis. 

Future work includes comparing the enhanced 

overrun mechanism (EO) with other synchronization 

mechanisms such as BWI, the BROE server and 

SIRAP. In addition the three overrun mechanism and 

comparing the implementation overhead of each 

mechanism is important. Finally, as the global 

schedulability analysis gives an upper bound for EO, it 

will be interesting to find an exact or less pessimistic 

schedulability analysis. 
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